Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Astronáutica - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




1.    INTRODUCCIÓN 



Astronáutica, ciencia e ingeniería de los viajes espaciales, tripulados o no. La exploración del espacio o astronáutica es una ciencia interdisciplinaria que se apoya en conocimientos de otros campos, como física, astronomía, matemáticas, química, biología, medicina, electrónica y meteorología.

Las sondas espaciales han aportado una enorme cantidad de datos científicos sobre la naturaleza y origen del Sistema Solar y del Universo (véase Cosmología). Los satélites situados en órbita terrestre han contribuido a mejorar las comunicaciones, la predicción del tiempo, la ayuda a la navegación y el reconocimiento de la superficie terrestre para la localización de recursos minerales y con fines militares.

La era espacial y la astronáutica práctica arrancan con el lanzamiento del Sputnik 1 por la Unión de Repúblicas Socialistas Soviéticas (URSS) en octubre de 1957, y con el del Explorer 1 por Estados Unidos en enero de 1958. En octubre de 1958 se creó en Estados Unidos la NASA. En las dos décadas siguientes se han llegado a lanzar más de 1.600 naves espaciales de todo tipo, la mayoría destinadas a orbitar nuestro planeta. Sobre la superficie de la Luna han estado dos docenas de hombres, que han regresado después a la Tierra. En el año 1997 había ya unos 8.000 objetos girando alrededor de la Tierra, en su mayoría restos de cohetes y equipos de sus fases de lanzamiento, y otros materiales semejantes. Hay unos 2.300 satélites y sondas espaciales en funcionamiento.


2.    FÍSICA DEL ESPACIO 



El límite entre la atmósfera terrestre y el espacio exterior es difuso y no está bien definido. Al disminuir gradualmente la densidad del aire con la altitud, las capas superiores de la atmósfera son tan tenues que se confunden con el espacio. A 30 km sobre el nivel del mar, la presión barométrica es un octavo de la presión a nivel del mar. A 60 km sobre el nivel del mar es 1/3.600; a 90 km es 1/400.000. A una altitud de 200 km hay aún la suficiente masa atmosférica como para frenar los satélites artificiales, debido a la resistencia aerodinámica, por lo que los satélites de larga vida han de alcanzar órbitas de gran altitud.

2.1.    La radiación en el espacio



Tradicionalmente se ha asociado el espacio con el vacío. Sin embargo, el espacio está ocupado por cantidades pequeñas de gases como el hidrógeno, y pequeñas cantidades de polvo de meteoroides y cometas. Además es atravesado por rayos X, radiación ultravioleta, radiación luminosa y rayos infrarrojos procedentes del Sol. Hay también rayos cósmicos, compuestos principalmente de protones, partículas alfa y núcleos pesados. Véase también Astronomía.

2.2.    Gravitación



La ley de la gravitación universal establece que cada partícula de la materia del Universo atrae a otra partícula con una fuerza directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que las separa. En consecuencia, la atracción gravitacional que ejerce la Tierra sobre el resto de los cuerpos (incluidas las naves y satélites espaciales) disminuye a medida que se alejan de la Tierra. No obstante, el campo gravitacional se extiende hasta el infinito y la gravedad no desaparece por grande que sea la distancia.
Las fuerzas aerodinámicas generadas por las estructuras de un avión (por ejemplo, las alas), lo sustentan en el aire frente a la fuerza de la gravedad, pero un vehículo espacial no puede mantenerse de este modo debido a la ausencia de aire en el espacio. Por ello, las naves deben entrar en órbita para poder permanecer en el espacio. Los aviones que vuelan por la atmósfera terrestre se sirven de propulsores para moverse y de alas para maniobrar, pero las naves espaciales no pueden hacerlo por la ausencia de aire. Los vehículos espaciales dependen de los cohetes de reacción para impulsarse y maniobrar, según las leyes de Newton sobre el movimiento (véase Mecánica). Cuando una nave dispara un cohete en una determinada dirección, se produce una reacción de movimiento de la nave en sentido contrario.

3.    SERES HUMANOS EN EL ESPACIO 



El espacio es un medio hostil para el ser humano. No contiene aire ni oxígeno, por lo que se hace imposible respirar. Si no se lleva la protección adecuada, el vacío del espacio puede matar por descompresión a una persona en pocos segundos. En el espacio la temperatura a la sombra de un planeta puede alcanzar valores cercanos al cero absoluto. En cambio, bajo radiación solar directa, las temperaturas son muy elevadas. Las radiaciones de la energía solar y cósmica del espacio pueden resultar mortales sin la protección de la atmósfera. Las condiciones ambientales pueden llegar a afectar a los instrumentos de las naves espaciales, por lo que se tienen en cuenta a la hora de diseñarlos y fabricarlos. Se han efectuado numerosos experimentos sobre ingravidez a largo plazo para averiguar sus efectos en las tripulaciones de las naves espaciales (véase Medicina aeroespacial).

Hay varias formas de protegerse de las condiciones ambientales del espacio. Los astronautas viajan en cabinas cerradas herméticamente, o dentro de trajes especiales, provistos de aire u oxígeno a presión que reproducen las condiciones de la Tierra. La temperatura y la humedad se controlan por aire acondicionado. Las superficies de la nave están diseñadas para regular la cantidad de radiación de calor que absorbe o refleja la nave. Los viajes espaciales se programan para evitar los intensos cinturones de radiación que rodean la Tierra. En los futuros viajes interplanetarios serán necesarias fuertes medidas de protección frente a las tormentas de radiación solar. En los viajes de larga duración y en órbitas terrestres prolongadas los efectos de la falta de gravedad pueden reducirse mediante la rotación de la nave, que reproduce la gravedad de forma artificial. Es por ello que las naves espaciales se podrían construir en forma de gran rueda que gira despacio sobre su eje, o como una pesa que rota sobre sí misma.

4.    HISTORIA


La humanidad ha soñado con viajes espaciales miles de años antes de que éstos empezaran a llevarse a cabo. Pruebas de ello las encontramos en los textos babilónicos, alrededor del año 4000 a.C. Dédalo e Ícaro, antiguos mitos griegos, también representan el deseo universal de volar. Ya en el siglo II d.C. el escritor griego Luciano escribió sobre un imaginario viaje a la Luna. A principios del siglo XVII, el astrónomo alemán Johannes Kepler escribió una sátira científica sobre un viaje a la Luna. El filósofo y escritor francés Voltaire cuenta en su obra Micromegas (1752) los viajes de unos habitantes de Sirio y de Saturno. Y en 1865, el escritor francés Jules Verne describe un viaje espacial en su famosa novela De la Tierra a la Luna. El sueño del vuelo espacial continuó en el siglo XX, especialmente en los escritos del inglés H. G. Wells, que en 1898 publicó La guerra de los mundos y en 1901 Los primeros hombres en la Luna. En los últimos tiempos la ciencia ficción ha desarrollado nuevas fantasías en torno a los vuelos espaciales.

4.1.    Primeras teorías


Durante siglos, cuando los viajes espaciales eran tan sólo una fantasía, astrónomos, químicos, matemáticos, meteorólogos y físicos desarrollaron un concepto del Sistema Solar, del universo estelar, de la atmósfera terrestre y del posible entorno espacial. En los siglos VII y VI a.C. los filósofos griegos Tales de Mileto y Pitágoras se dieron cuenta de que la Tierra era una esfera. En el siglo III a.C. el astrónomo Aristarco de Samos afirmó que la Tierra giraba alrededor del Sol. Hiparco de Nicea, también griego, recogió datos sobre las estrellas y los movimientos de la Luna en el siglo II a.C. Tolomeo de Alejandría, en el siglo II de la era cristiana, en su concepción cósmica conocida como sistema de Tolomeo, situó la Tierra en el centro del Sistema Solar.

4.2.    Descubrimientos científicos 



Tuvieron que pasar 1.400 años hasta que el astrónomo polaco Nicolás Copérnico descubrió que los planetas, incluida la Tierra, giraban alrededor del Sol (véase Sistema de Copérnico). Más tarde, en el siglo XVI, las observaciones del astrónomo danés Tycho Brahe sirvieron de base para la formulación de las leyes del movimiento planetario por Johannes Kepler. Galileo, Edmund Halley, William Herschel y James Jeans fueron otros astrónomos que hicieron importantes contribuciones a la astronomía.
Físicos y matemáticos también ayudaron al desarrollo de la astronomía. En 1654, el físico alemán Otto von Guericke demostró que el vacío podía mantenerse, refutando la antigua teoría de que la naturaleza “aborrecía” el vacío. Más tarde, en el siglo XVII, Newton formuló las leyes de la gravitación universal y del movimiento, que establecieron los principios básicos que regulan la propulsión y el movimiento orbital de las modernas naves espaciales.
A pesar de los grandes descubrimientos de la teoría científica en épocas anteriores, los viajes espaciales sólo fueron posibles en el siglo XX, cuando se desarrollaron los actuales sistemas de propulsión por cohete, guiado y control de naves espaciales.

4.3.    Propulsión por cohetes 



Las técnicas de propulsión por cohetes se desarrollaron hace mucho tiempo. Antiguamente se usaba pólvora como combustible, de un modo muy parecido a los fuegos artificiales. Se tienen noticias de que en 1232, en China, la ciudad de Kaifeng se defendió de los ataques de los mongoles con la ayuda de cohetes. Desde el renacimiento hay numerosas referencias al uso de cohetes, unas veces real y otras sólo en proyectos, en las batallas que se libraron en Europa. Ya en el año 1804 el Ejército británico creó un cuerpo equipado con cohetes que podían alcanzar una distancia de unos 1.830 metros.
En Estados Unidos, un profesor de física de la Universidad de Clark, Robert Hutchings Goddard, fue el pionero en la propulsión por cohetes. Comenzó experimentando con combustibles líquidos para cohetes en la década de 1920, y realizó su primer lanzamiento con éxito el 16 de marzo de 1926. Durante esa época ya se investigaba en varias partes del mundo sobre cohetes y naves espaciales. Alrededor del año 1890, Herman Ganswindt, un estudiante de Derecho de nacionalidad alemana, concibió una nave espacial propulsada con combustible sólido, que demostraba sus avanzados conocimientos sobre el problema de la estabilidad. Konstantín Eduardovich Tsiolkovski, un maestro de escuela ruso, publicó en 1903 Un cohete en el espacio cósmico, en donde proponía el uso de combustibles líquidos para las naves espaciales. En 1923, un matemático y físico alemán llamado Hermann Oberth, publicó Die Rakete zu den Planetenräume (Los cohetes en el espacio interplanetario). Este libro tuvo su continuación en Die Erreichbarkeit der Himmelskörper (La posibilidad de llegar a los cuerpos celestes), publicado en 1925 por el arquitecto alemán Walter Hohmann, que contenía los primeros cálculos detallados de las órbitas interplanetarias.
La II Guerra Mundial influyó en el desarrollo de cohetes suborbitales de largo alcance. Estados Unidos, la URSS, Gran Bretaña y Alemania desarrollaron simultáneamente cohetes para usos militares. Los alemanes fueron los que tuvieron más éxito y desarrollaron el V-2 (un cohete de combustible líquido con el que bombardearon Londres) en Peenemünde, un pueblo cercano a la costa báltica. Al acabar la guerra, Estados Unidos conservó algunos V-2 que emplearon para la investigación de los vuelos verticales. Algunos ingenieros alemanes se trasladaron a la URSS al terminar la guerra, pero los expertos en cohetes acabaron en Estados Unidos, estando entre ellos Walter Dornberger y Wernher von Braun (véase Misiles teledirigidos).

5.    NAVES ESPACIALES 



Los artefactos espaciales no tripulados pueden ser de diversos tamaños, desde unos centímetros hasta varios metros de diámetro, y tener muchas formas diferentes, según el uso para el que estén construidos. Las naves no tripuladas cuentan con equipos de radio para transmitir información a la Tierra y para señalar su posición en el espacio.

Las naves tripuladas han de cumplir con requisitos más complicados debido a las necesidades de la propia tripulación. Están diseñadas con equipos capaces de proveer de aire, agua y comida a los tripulantes, equipos de navegación y control, asientos y compartimentos para dormir y equipos de transmisión para enviar y recibir información. Una característica de las naves tripuladas es la pantalla o escudo térmico que las recubre para protegerlas del calor que se produce al reentrar en la atmósfera. Véase Lanzamiento y aterrizaje, más abajo.

5.1.    Propulsión



Los cohetes que lanzan y propulsionan las naves espaciales se pueden dividir en dos grandes grupos: de combustible sólido, que emplean productos químicos para la combustión, igual que la pólvora, y de combustible líquido que llevan en tanques separados combustibles líquidos y agentes oxidantes. La mayoría de los cohetes lanzados por Estados Unidos tenían varias fases diferentes, cada una de ellas propulsada por su propio combustible. Una vez consumido el combustible, toda la fase se separaba de la nave para quedar flotando en el espacio.
Dado que la tecnología usada para el lanzamiento de naves espaciales está en estrecha relación con la de los misiles balísticos, desde 1957 hasta 1965 sólo Estados Unidos y la URSS fueron capaces de lanzar satélites. En años posteriores, Francia, Japón, India y China lanzaron satélites terrestres propios, con tecnologías cada vez más sofisticadas. En 1984, los trece países miembros de la Agencia Espacial Europea comenzaron su Programa Ariane de lanzamientos desde el centro espacial de Kourou, en la Guayana Francesa. Sin embargo, Estados Unidos y la URSS siguieron siendo los únicos países con capacidad para lanzar al espacio naves grandes y pesadas, requisito necesario para llevar tripulaciones.

5.2.    Lanzamiento y aterrizaje



Las naves espaciales se lanzan desde plataformas construidas al efecto, en donde se colocan e inspeccionan cuidadosamente las naves y los cohetes propulsores antes del lanzamiento. Las operaciones son supervisadas por ingenieros y técnicos en un puesto de control situado en las inmediaciones. Cuando todo está listo, se encienden los motores del cohete y la nave se eleva hacia el espacio.
La reentrada en la atmósfera presenta el problema de ralentizar la velocidad de la nave para evitar su destrucción a causa del calor aerodinámico. Los programas estadounidenses Mercury, Géminis y Apolo superaron esta dificultad protegiendo la superficie de la nave con un escudo térmico, construido con materiales plásticos, metálicos y cerámicos, que se funden y volatilizan al entrar en la atmósfera, disipando el calor sin daños para la nave y sus tripulantes. El escudo térmico de las lanzaderas espaciales está construido a base de chapas de cerámica soldadas individualmente al casco de la nave. Antes de la aparición de estos vehículos capaces de aterrizar en una pista (véase Lanzadera espacial, más abajo), las naves estadounidenses tripuladas caían sobre el mar para amortiguar el impacto. Los astronautas y su cápsula eran recogidos enseguida por los helicópteros y llevados a bordo de unidades navales que se encontraban a la espera. Por el contrario, los astronautas soviéticos aterrizaban sobre tierra firme en distintas partes de Siberia.

5.3.    En órbita alrededor de la Tierra 



Los satélites que giran en la órbita terrestre pueden hacerlo en círculo o en elipse. Los satélites artificiales en órbita circular se mueven a una velocidad constante. Sin embargo, a mayor altitud se mueven a menor velocidad respecto a la superficie de la Tierra. Cuando mantienen una altura de 35.800 km sobre el ecuador los satélites son geoestacionarios y se mueven en una órbita geosíncrona, es decir, justo a la misma velocidad que la Tierra, de manera que se mantienen en un mismo punto fijo sobre el ecuador. La mayoría de los satélites de comunicaciones están situados en este tipo de órbitas.

En las órbitas elípticas la velocidad varía, siendo mayor en el perigeo (altitud mínima) y menor en el apogeo (altitud máxima). Las órbitas elípticas pueden descansar en cualquier plano que pase por el centro de la Tierra. Las órbitas polares descansan en un plano que pasa por los polos norte o sur; esto quiere decir que atraviesan el eje de rotación de la Tierra. Las órbitas ecuatoriales descansan en un plano que atraviesa el ecuador. El ángulo entre el plano orbital y el ecuador se denomina inclinación de la órbita.

La Tierra gira una vez cada 24 horas vista desde un satélite en órbita polar. Los satélites meteorológicos en órbita polar, que llevan cámaras de televisión y de infrarrojos, pueden observar las condiciones meteorológicas de todo el globo, de polo a polo, en un solo día. Las órbitas con otro tipo de inclinación cubren un área menor de la Tierra, y no alcanzan algunas zonas cercanas a los polos.

Mientras un objeto permanezca en órbita en el espacio, seguirá orbitando sin necesidad de propulsión dado que no tiene fuerza de rozamiento que ralentice su velocidad. Si toda o parte de la órbita atraviesa la atmósfera terrestre, el objeto perderá velocidad por rozamiento aerodinámico con el aire. Este fenómeno provocará su caída gradual hacia altitudes más bajas, hasta que el objeto entre en la atmósfera y se desintegre como un meteoro.

6.    PROGRAMAS ESPACIALES NO TRIPULADOS



Una larga historia de mitos, sueños, novelas, ciencia y tecnología culminó con el lanzamiento del primer satélite artificial a la órbita terrestre, el Sputnik 1, por la URSS el 4 de octubre de 1957.

6.1.    Primeros satélites artificiales 



El Sputnik 1 era una esfera de aluminio de 58 cm de diámetro y 83 kg. Tardaba 96,2 minutos en dar la vuelta a la Tierra. Describía una órbita elíptica y alcanzaba su apogeo a una altura de 946 km, y su perigeo a 227 km. Contaba con instrumentos que durante 21 días enviaron información a la Tierra sobre radiación cósmica, meteoroides y sobre la densidad y la temperatura de las capas superiores de la atmósfera. Al cabo de 57 días el satélite entró en la atmósfera terrestre y se destruyó por efecto del calor debido al rozamiento aerodinámico.
El segundo satélite artificial fue también un vehículo espacial soviético, de nombre Sputnik 2. Fue lanzado el 3 de noviembre de 1957 y llevaba a bordo una perra llamada Laika. Realizó las primeras mediciones biomédicas en el espacio. Este satélite entró en la atmósfera terrestre destruyéndose después de 162 días de vuelo.
Mientras el Sputnik 2 todavía se encontraba en órbita, Estados Unidos lanzó con éxito su primer satélite, el Explorer 1, desde la base de cabo Cañaveral (llamado cabo Kennedy entre 1963 y 1973), en Florida, el 31 de enero de 1958. Era una nave cilíndrica de 14 kg, 15 cm de diámetro y 203 cm de longitud, que estuvo transmitiendo mediciones de radiación cósmica y micrometeoritos durante 112 días, y aportó los primeros datos desde un satélite que llevaron al descubrimiento de los cinturones de radiación de Van Allen.
El 17 de marzo de 1958, Estados Unidos lanzó su segundo satélite, el Vanguard 2. Un estudio preciso de las variaciones de su órbita reveló que la Tierra estaba algo achatada por los polos. Utilizando energía solar, el satélite estuvo transmitiendo señales durante más de 6 años. Al Vanguard 2 le siguió el satélite estadounidense Explorer 3, lanzado el 26 de marzo de 1958, y el soviético Sputnik 3, lanzado el 15 de mayo de ese mismo año. Este último, de 1.327 kg, efectuó mediciones de la radiación solar, la radiación cósmica, los campos magnéticos y otros fenómenos, hasta que dejó su órbita en abril de 1960.

6.2.    Misiones lunares no tripuladas



Por ser el astro más cercano a la Tierra, la Luna ha sido el objetivo de numerosas misiones espaciales. En 1958 fracasaron las primeras sondas lunares enviadas por Estados Unidos y la URSS. La nave rusa Luna 2, lanzada el 12 de septiembre de 1959, alcanzó la superficie lunar 36 horas más tarde. Desde entonces, ambos países efectuaron lanzamientos con resultados diferentes. Las primeras fotografías de la cara oculta de la Luna fueron tomadas por el Luna 3, enviado al espacio por la URSS el 4 de octubre de 1959. Uno de las misiones más espectaculares fue la realizada por el Ranger 7, enviado al espacio por Estados Unidos el 28 de julio de 1964. Antes de estrellarse contra la superficie de la cara visible de la Luna, llegó a transmitir 4.316 imágenes por televisión, desde altitudes entre 1.800 km y 300 m, proporcionando a la humanidad las primeras imágenes detalladas del satélite.
El 31 de enero de 1966 la URSS lanzó el Luna 9, que consiguió realizar el primer aterrizaje sobre la Luna sin ser destruido por el impacto. Le siguió la nave estadounidense Surveyor 1, el 30 de mayo de ese año, que también realizó un aterrizaje suave en la superficie lunar, y envió a la Tierra 11.150 fotografías del satélite.
Además de la información científica recogida, gran parte del interés del programa espacial de Estados Unidos se centraba en desembarcar un hombre en la Luna. Con este propósito se llevaron a cabo varios vuelos posteriores no tripulados, como los realizados por el Surveyor 3 y Surveyor 5 en 1967. Ambas naves, después de un vuelo de dos días, enviaron a la Tierra un gran número de imágenes de televisión de la superficie lunar. El Surveyor 3 tomó muestras del suelo de la Luna que fueron examinadas por cámaras de televisión. El Surveyor 5 realizó análisis químicos de la superficie lunar, utilizando técnicas de dispersión de partículas alfa; éste fue el primer análisis sobre el terreno de un cuerpo extraterrestre.
Otros satélites lanzados para preparar el alunizaje fueron los del programa Lunar Orbiter. Entre 1966 y 1967, cinco de estos satélites dieron vueltas alrededor de la Luna obteniendo miles de fotografías. Con este material se fueron seleccionando los lugares de alunizaje previstos en el programa Apolo.
La URSS proyectó misiones lunares no tripuladas que alcanzaron la Luna y trajeron muestras de vuelta a la Tierra. La nave Luna 16, lanzada el 12 de septiembre de 1970, introdujo unos 113 g de suelo lunar en un recipiente sellado, que fue lanzado de vuelta a la Tierra y recuperado por los soviéticos. El Luna 17, lanzado el 10 de noviembre de 1970, alunizó suavemente y desplegó un vehículo automático de exploración lunar, el Lunokhod 1, que iba equipado con una cámara de televisión y baterías solares. Durante diez días lunares, este artefacto controlado desde la Tierra recorrió 10,5 km de la superficie lunar, transmitiendo imágenes por televisión y datos científicos. En febrero de 1972 el Luna 20 regresó a la Tierra con muestras lunares. El Luna 21, en enero de 1973, colocó en la Luna el vehículo Lunokhod 2. En agosto de 1976, con el Luna 24, finalizó esta serie de exploraciones lunares.
La sonda Clementine, lanzada por Estados Unidos en febrero de 1994, continuó la exploración lunar. Orbitó la Luna durante tres meses y obtuvo los primeros datos fiables de su topografía utilizando altímetros láser. A partir de unas señales de radar enviadas por la sonda, un grupo de científicos estadounidenses anunció, a finales de 1996, la posible existencia de agua helada en un cráter. En enero de 1998 la sonda Lunar Prospector de la NASA entró en órbita alrededor de la Luna. En marzo de ese mismo año los datos enviados por la nave parecían indicar la existencia de una cantidad significativa de agua en los polos del satélite. El 31 de julio de 1999 la NASA destruyó la Lunar Prospector haciéndola chocar contra la superficie lunar, con el fin de poder comprobar esta teoría. Tras dos meses y medio de análisis de los datos obtenidos por numerosos telescopios que siguieron el impacto, la organización estadounidense anunció la ausencia de indicios de agua en el satélite, si bien no descartó totalmente la hipótesis. La Lunar Prospector también investigó el campo gravitacional y el campo magnético de la Luna.

6.3.    Satélites científicos



A medida que los sistemas de despegue de las naves espaciales (propulsadas por cohetes) y los equipos científicos se hicieron más fiables, se fueron desarrollando una gran variedad de satélites. Los científicos trataron de recopilar información y realizar estudios precisos del Sol, otras estrellas, la Tierra y del mismo espacio. La atmósfera que envuelve la Tierra impide obtener tales datos, a excepción de la escasa información que se podía conseguir por medio de globos a gran altitud.
En Estados Unidos se han lanzado numerosos satélites astronómicos. Así, desde 1962 los Observatorios Solares Orbitales (OSO, en inglés) han estudiado la radiación ultravioleta, los rayos X y los rayos gamma procedentes del Sol. Satélites pioneros han recogido datos de la radiación cósmica, el viento solar y las características electromagnéticas del espacio. Los Observatorios Astronómicos Orbitales (OAO, en inglés) han estudiado la radiación estelar, y los Observatorios Geofísicos Orbitales (OGO, en inglés) se han dedicado a conocer las interacciones entre el Sol, la Tierra y el entorno espacial. El Satélite de Astronomía de Infrarrojos (IRAS, en inglés), un proyecto anglo-estadounidense lanzado en 1983, tenía como misión realizar una cartografía del cielo. El telescopio espacial Hubble fue lanzado al espacio por la lanzadera espacial Discovery en 1990.
En 1999 se lanzaron dos telescopios de rayos X de tecnología avanzada. En agosto, la NASA puso en órbita el telescopio Chandra, y en diciembre, un cohete Ariane 5 lanzó el telescopio Newton XMM de la Agencia Espacial Europea.

6.4.    Satélites de aplicaciones



Este tipo de satélites no tripulados son también de gran utilidad para los científicos dedicados al estudio de la Tierra. Se pueden clasificar, a grandes rasgos, en tres tipos: medioambientales, de navegación y de comunicaciones.
Los satélites medioambientales observan la Tierra y la atmósfera transmitiendo imágenes con diversos fines. Los satélites meteorológicos envían diariamente datos sobre la temperatura y formación de nubes. Un ejemplo es el Satélite Meteorológico Sincronizado (SMS), que desde una órbita geoestacionaria envía imágenes de una extensa zona de la Tierra cada 30 minutos. Dos satélites SMS pueden cubrir todo un continente y sus mares adyacentes.
Los satélites estadounidenses Landsat observan la Tierra con ayuda de escáneres ópticos multiespectrales y envían datos a las estaciones en Tierra, que se procesan en imágenes a color y suministran información muy valiosa sobre características del suelo, cantidades de hielo y agua en los mares, contaminación de las aguas costeras, salinidad y plagas de insectos en cosechas y bosques. Incluso pueden detectarse incendios forestales desde los satélites. Los estudios sobre las fallas y fracturas de la corteza terrestre facilitan a los geólogos la identificación de depósitos y yacimientos de petróleo y minerales. El SPOT (Sistema Probatorio para la Observación de la Tierra), un satélite europeo lanzado en 1985, logra transmitir imágenes de la Tierra con más detalle que los estadounidenses Landsat. Véase también Teledetección.
Los satélites de observación terrestre se utilizan en diversos países para obtener imágenes de interés militar, como explosiones nucleares en la atmósfera y en el espacio, bases de lanzamiento de misiles balísticos, así como movimientos de tropas o barcos. En los años ochenta surgió la polémica cuando Estados Unidos se propuso desarrollar un sistema de defensa antibalística accionado con tecnología láser.
Los satélites de navegación proporcionan un punto conocido de observación de la órbita terrestre que ayuda a fijar la posición de barcos y submarinos con un margen de error de unos pocos metros. El Sistema de Posicionamiento Global (GPS), integrado por 24 satélites, suministra la posición, la velocidad y el tiempo 24 horas al día en cualquier lugar del mundo.

6.5.    Estudio de los planetas 



Además de la Luna, las naves espaciales han llegado a Marte y Venus, han alcanzado las proximidades de todos los planetas solares, excepto Plutón, y han llevado a cabo estudios sobre los cometas.

6.5.1.    Mercurio


El estudio del planeta más próximo al Sol comenzó con el viaje del Mariner 10, enviado en octubre de 1973 por Estados Unidos, en un viaje por la zona interior del Sistema Solar hacia Mercurio. Pasó cerca de Venus en febrero de 1974 y aprovechó la fuerza de gravedad de este planeta para entrar en la órbita solar. En marzo de ese año llegó a unos 692 km de Mercurio, obteniendo las primeras imágenes de su superficie llena de cráteres, parecida a la lunar. En su segunda aproximación, realizada en septiembre, detectó un campo magnético insospechado. En su tercer y último encuentro con el planeta, en marzo de 1975, el Mariner 10 se aproximó a unos 317 kilómetros.

6.5.2.    Venus



El programa de la URSS para penetrar en la densa atmósfera de Venus, cubierta de nubes, tuvo un gran éxito. El Venera 7 fue lanzado en agosto de 1970, sobreviviendo lo justo para enviar, durante 23 minutos, datos sobre la temperatura. El Venera 8, lanzado en 1972, envió a la Tierra datos sobre la superficie del planeta y un análisis de su suelo. En octubre de 1975, el Venera 9 y el Venera 10 se posaron en la superficie durante una hora, obteniendo las primeras fotografías de la superficie venusiana. En 1978, el Venera 11 y el Venera 12 soltaron dos sondas que llegaron a Venus en diciembre. Ambos registraron una presión de 88 atmósferas y una temperatura en superficie de 460 ºC. El 1 y 5 de marzo de 1982, el Venera 13 y el Venera 14 se posaron en Venus, obteniendo imágenes de la superficie del planeta y efectuando análisis de la composición química de la atmósfera y del suelo. El 10 y el 14 de octubre de 1983, el Venera 15 y el Venera 16 entraron en la órbita de Venus y emitieron imágenes por radar. En junio de 1985, el Vega 1 y el Vega 2, de camino hacia el cometa Halley, soltaron cuatro sondas en la atmósfera venusiana.
Estados Unidos lanzó el 20 de mayo de 1978 el Pioneer Venus 1, y el 8 de agosto del mismo año el Pioneer Venus 2, que portaba cinco sondas atmosféricas, alcanzando ambos Venus el 5 y 9 de diciembre respectivamente. El primero levantó el mapa de casi toda la superficie del planeta, y las sondas del segundo analizaron la composición y movimientos en la atmósfera y su interacción con el viento solar. La sonda Magallanes fue enviada hacia Venus desde una lanzadera espacial en 1989 y empezó a transmitir imágenes por radar de su superficie en agosto de 1990.

6.5.3.    Marte 



La URSS lanzó al espacio las sondas Mars 2 y Mars 3 en mayo de 1971, destruyéndose ambas por el impacto al caer en Marte, aunque antes consiguieron transmitir algunos datos. En agosto de 1973, la URSS envió los Mars 4, 5, 6 y 7, pero diversos fallos técnicos hicieron fracasar todas las misiones. En 1988 la URSS lanzó las sondas Phobos 1 y 2, que tenían previsto llegar a Fobos, la luna de Marte. La primera se perdió por un fallo humano y la segunda perdió el contacto por radio cuando estaba posándose en Fobos. La sonda rusa Mars 96, con instrumental científico ruso, europeo y estadounidense, se precipitó al océano Pacífico unas horas después de su lanzamiento en noviembre de 1996.
Como parte del programa de Estados Unidos fue lanzado el Mariner 9 en mayo de 1971; entró en la órbita de Marte y permaneció en ella desde noviembre de 1971 hasta octubre de 1972, transmitiendo fotografías hasta casi completar el cartografiado de toda la superficie del planeta. En agosto y septiembre de 1975, los Viking 1 y 2 emprendieron un viaje de once meses de duración. Ambos contaban con sistemas de aterrizaje y estaban equipados con laboratorios químicos y sistemas de detección de vida, dos cámaras de televisión en color, instrumentos de medición atmosférica y sismológica, además de un brazo mecánico accionado por control remoto desde la Tierra de tres metros de largo. Ambos ingenios estuvieron en funcionamiento durante varios años.

En 1992 se lanzó el Mars Observer, que desapareció de los radares antes de entrar en órbita alrededor de Marte. La NASA inició entonces una nueva serie de expediciones al planeta vecino con el lanzamiento de las naves no tripuladas Mars Global Surveyor, en noviembre de 1996, y Mars Pathfinder, en diciembre de ese mismo año. La sonda Mars Global Surveyor alcanzó la atmósfera de Marte en septiembre de 1997, pero un problema en uno de sus paneles solares retrasó el proceso de aerofrenado necesario para alcanzar la órbita final correcta, con lo que la toma de imágenes de alta resolución de la superficie marciana se retrasó. En junio de 1999 las mediciones realizadas por la sonda llevaron a confeccionar el primer mapa tridimensional detallado de la superficie del planeta. La nave Mars Pathfinder llegó a Marte el 4 de julio de 1997; durante el descenso, la sonda envió datos sobre la atmósfera del planeta. Transportaba un vehículo todoterreno, el pequeño robot Sojourner, que analizó las rocas y el suelo, proporcionando datos muy interesantes sobre el presente y el pasado de Marte. La misión duró casi tres meses, dos más de lo previsto.
Año y medio después, el 11 de diciembre de 1998, se inició la segunda fase del programa de exploración con el lanzamiento desde cabo Cañaveral de la Mars Climate Orbiter, primera de las dos naves que lo integraban; la segunda, la Mars Polar Lander, fue lanzada el 3 de enero de 1999. Pero ambas misiones fracasaron. La Mars Climate Orbiter desapareció el 23 de septiembre de 1999, cuando intentaba entrar en órbita de Marte, y el 3 de diciembre de 1999 se perdió todo contacto con la Mars Polar Lander, cuando intentaba posarse en la superficie marciana.

6.5.4.    Júpiter y Saturno



Las sondas estadounidenses Pioneer 10 y 11 fueron lanzadas en 1972 y 1973, pasaron a salvo por el inexplorado cinturón de asteroides situado entre las órbitas de Marte y Júpiter y continuaron hacia este último, a donde llegaron en diciembre de 1973 y de 1974. Las dos sondas, con un peso de 258 kg, pasaron a una distancia de 130.400 y 46.700 km del planeta, continuando el Pioneer 10 su viaje hacia el exterior del Sistema Solar, con lo que se convirtió en el primer artefacto lanzado al espacio interestelar. Se espera que llegue a las proximidades de otra estrella dentro de unos 80.000 años.
En septiembre de 1979, la sonda Pioneer 11 llegó a Saturno, preparando el camino al Voyager 1 y al Voyager 2. Estos últimos, lanzados en 1977, lograron con éxito alcanzar Júpiter en marzo y julio de 1979, y realizaron numerosas mediciones y fotografías que mostraban un sistema de anillos alrededor del planeta. En noviembre de 1980 y en agosto de 1981 sobrevolaron Saturno.
En diciembre de 1995, la sonda espacial Galileo de la NASA alcanzó la órbita de Júpiter, comenzando una larga misión que incluía el estudio de la atmósfera, la magnetosfera y las lunas del planeta. Los datos enviados por la sonda indican que los anillos de Júpiter se originaron a partir de grandes cantidades de polvo producidas por el choque de meteoritos con las lunas pequeñas del planeta, y confirman la existencia de tres anillos, el último de ellos dividido en dos, uno dentro de otro.
En octubre de 1997 fue lanzada hacia Saturno la nave Cassini, que deberá entrar en órbita alrededor del planeta en el año 2004 y que recogerá datos sobre Saturno y sus satélites durante cuatro años.

6.5.5.    Urano y Neptuno



Después de su paso por Saturno, el Voyager 2 se dirigió a Urano. En enero de 1986 pasó a 80.000 km de distancia de este planeta cubierto de nubes, y descubrió cuatro nuevos anillos, además de diez nuevas lunas. La sonda se acercó aún más a una de las lunas, Miranda, y obtuvo imágenes asombrosas de este helado cuerpo celeste. El Voyager 2 continuó después su viaje a Neptuno, aproximándose a 5.000 km del planeta en agosto de 1989, y descubrió seis nuevas lunas antes de abandonar el Sistema Solar.

7.    PROGRAMAS ESPACIALES TRIPULADOS 



Un año después de obtener los primeros éxitos con pequeños satélites en 1957 y 1958, tanto la URSS como Estados Unidos comenzaron a desarrollar programas para lanzar seres humanos al espacio. Ambas potencias se sirvieron de perros y chimpancés para experimentar los efectos de la ausencia de gravedad en los seres vivos.

7.1.    Los programas Vostok y Mercury 



La URSS fue la primera en poner un hombre en el espacio, el cosmonauta Yuri A. Gagarin, que completó una órbita terrestre en la nave Vostok 1 el 12 de abril de 1961. En su vuelo, que duró una hora y cuarenta y ocho minutos, alcanzó un apogeo de 327 km y un perigeo de 180 km, aterrizando a salvo en Siberia. En los dos años siguientes se llevaron a cabo cinco nuevos vuelos del programa Vostok. El piloto del Vostok 6 fue Valentina Tereshkova, la primera mujer astronauta. Lanzada el 16 de junio de 1963, dio 48 vueltas alrededor de la Tierra.

Mientras tanto, el programa estadounidense Mercury, similar al soviético, seguía su desarrollo. El 5 de mayo de 1961, el capitán de corbeta de la Armada de Estados Unidos, Alan Bartlett Shepard, se convirtió en el primer astronauta estadounidense. La nave del programa Mercury, bautizada Freedom 7, describió una trayectoria balística y realizó un vuelo suborbital de 15 minutos de duración. Un vuelo similar tuvo lugar el 21 de julio, protagonizado por el capitán Grissom de las Fuerzas Aéreas estadounidenses. El 20 de febrero de 1962, el teniente coronel John Herschell Glenn, del cuerpo de Marines, se convirtió en el primer astronauta estadounidense en dar la vuelta a la Tierra, en un vuelo de tres vueltas completas. Entre 1962 y 1963 se llevaron a cabo tres vuelos más dentro del programa Mercury.

7.2.    Los programas Voskhod y Gemini



El programa Voskhod era una adaptación del Vostok, modificado para acomodar dos o tres cosmonautas a bordo. El 12 de octubre de 1964 los cosmonautas Vladímir M. Komarov, Borís B. Yegorov y Konstantín P. Feoktistov realizaron un vuelo de 15 órbitas en la nave Voskhod 1. Éste fue el único vuelo tripulado en ese año y situó el número de horas de vuelo de los cosmonautas soviéticos en un total de 455. En aquel momento, el total de horas de vuelo de los astronautas estadounidenses sólo llegaba a las 54 horas. El 18 de marzo de 1965 los cosmonautas Pável I. Belyayev y Alexéi A. Leonov fueron lanzados a bordo del Voskhod 2. En un vuelo de 17 vueltas a la Tierra, Leonov se convirtió en el primer hombre en realizar un paseo espacial, llevando a cabo la primera actividad extravehicular (EVA, siglas en inglés), al salir de la nave unido a ella por medio de un cable.
El programa estadounidense Gemini estaba diseñado para desarrollar una tecnología que permitiera llegar a la Luna. En mayo de 1961 el presidente de Estados Unidos, John F. Kennedy, puso en marcha el programa Apolo, con el objetivo de llevar un hombre a la Luna y que pudiera regresar a salvo “antes del fin de la década”. Esta decisión se materializó en un intenso programa de vuelos espaciales tripulados a gran escala. Las naves Gemini albergaban dos tripulantes y estaban construidas para funcionar largos periodos de tiempo y desarrollar técnicas espaciales de encuentros y ensamblajes con otras naves. Entre 1965 y 1966 se llevaron a cabo diez misiones dentro de este programa.
Durante el vuelo del Gemini 4, el comandante Edward H. White, de las fuerzas aéreas, se convirtió en el primer astronauta estadounidense en realizar un paseo espacial. Con la ayuda de un sistema autopropulsado de gas a presión, permaneció 21 minutos en el espacio. Mientras las naves Gemini 6 y 7 se hallaban juntas en órbita, en diciembre de 1965 se acercaron a muy pocos metros una de otra. Al cabo de 20 horas, mientras la Gemini 6 aterrizaba, la Gemini 7 continuó orbitando, hasta completar un total de 334 horas. Este vuelo de casi 14 días de duración obtuvo datos e información médica sobre los seres humanos en el espacio, vitales para asegurar el éxito de la misión lunar Apolo, que duraría 10 días. Además, sirvió para poner a prueba la viabilidad de los sistemas de compartimentos de combustible de hidrógeno y oxígeno. En los vuelos de los Gemini 10, 11 y 12 se llevaron a cabo varios encuentros y acoplamientos con vehículos espaciales que habían sido puestos en órbita previamente.
Al finalizar el último vuelo del programa Gemini, los astronautas estadounidenses habían acumulado un total de 2.000 horas de vuelos tripulados en el espacio, aventajando a los soviéticos, y unas 12 horas en paseos espaciales (EVA).

7.3.    Los programas Soyuz y Apolo 



El año 1967 fue trágico para ambas potencias espaciales. El 27 de enero, durante una prueba en Tierra de la nave Apolo en cabo Kennedy, se inició un fuego en el módulo de control de la tripulación, con tres hombres a bordo. Debido a la atmósfera de oxígeno puro presurizado en el interior de la nave, un incendio repentino rodeó y causó la muerte de los astronautas Grisson, White y Roger B. Chaffee. Como consecuencia de este incidente, el programa Apolo sufrió un retraso de más de un año, mientras se volvía a revisar el diseño de la nave y los materiales.
El 23 de abril de 1967, el cosmonauta Komarov despegó en el primer vuelo tripulado de la nueva nave soviética Soyuz. La nave tenía espacio para tres cosmonautas, además de un compartimento para trabajar y realizar experimentos, accesible a través de una escotilla. Cuando entró en la atmósfera terrestre y desplegó los paracaídas de aterrizaje, las cuerdas de éste se enredaron, provocando la muerte del piloto. El programa soviético se reanudó dos años más tarde.
En octubre de 1968 se lanzó el primer vuelo tripulado del proyecto Apolo mediante el sistema propulsor Saturno 1B. Los astronautas Schirra, R. Walter Cunningham y Donn F. Eisele, dieron 163 vueltas alrededor de la Tierra, comprobando el funcionamiento de los equipos, haciendo fotografías y transmitiendo imágenes de televisión. En diciembre de 1968 el Apolo 8, que llevaba a bordo a los astronautas Borman, Lovell y William A. Anders dio diez vueltas alrededor de la Luna y volvió a la Tierra. El Apolo 9, tripulado por James A. McDivitt, David R. Scott y Russel L. Schweickart, realizó pruebas de separación, encuentro y acoplamiento del módulo lunar (ML) de aterrizaje, en una misión de 151 vueltas a la Tierra. El vuelo del Apolo 10, que llevaba a bordo al astronauta Stafford, al capitán de corbeta John W. Young y al capitán de fragata Eugene A. Cernan, dio 31 vueltas a la Luna, en preparativos para un posterior alunizaje. Según estaba planeado, Stafford y Cernan se trasladaron desde el módulo de comando del Apolo (MC) al módulo lunar, con el que descendieron hasta una distancia de 16 km de la superficie de la Luna, mientras el astronauta Young pilotaba el módulo de comando. Después, en la fase ascendente, realizaron con éxito las maniobras de aproximación y acoplamiento al módulo de comando, entraron en él y abandonaron el módulo lunar, encendiendo los cohetes para regresar a la Tierra. El programa Apolo estaba ya listo para llevar astronautas a la Luna. Véase Seres humanos en la Luna, más abajo.
Mientras tanto, la URSS lanzó la nave no tripulada Zond a una órbita lunar, llevando cámaras y especies biológicas a bordo. En octubre de 1968 el coronel Gueorgui T. Beregovoi dio 60 vueltas a la Luna con la nave Soyuz 3. Las naves Soyuz 4 y Soyuz 5 completaron en órbita terrestre maniobras de aproximación y acoplamiento en enero de 1969. Con ambas naves acopladas, los cosmonautas Alexéi S. Yeliseyev y el teniente coronel Yevgueni V. Khrunov salieron en un paseo espacial de la Soyuz 5 a la Soyuz 4, pilotada por el coronel Vladímir A. Shatalov. En octubre de 1969 despegaron las naves Soyuz 6, 7 y 8 con un día de diferencia, se encontraron en órbita, pero no llegaron a acoplarse. La Soyuz 9, tripulada por dos cosmonautas, batió el récord de duración de un vuelo, permaneciendo en el espacio casi 18 días en junio de 1970.

8.    SERES HUMANOS EN LA LUNA 



En el año 1969, la humanidad logró realizar el viejo sueño de pisar la Luna. El 16 de julio despegó la histórica nave Apolo 11. Una vez en la órbita lunar, Edwin E. Aldrin y Neil A. Armstrong se trasladaron al módulo lunar. Michael Collins permaneció en la órbita lunar pilotando el módulo de control después de la separación y apoyando las maniobras del módulo lunar. Este último descendió a la Luna y se posó sobre la superficie el 20 de julio, al borde del Mar de la Tranquilidad. Horas más tarde, Armstrong descendió por una escalerilla con su traje espacial y puso su pie sobre la Luna. Sus primeras palabras fueron: “Éste es un pequeño paso para un hombre, pero un gran salto para la humanidad”. Pronto le siguió Aldrin y ambos astronautas estuvieron caminando más de dos horas por la Luna. Recogieron 21 kg de muestras del suelo, tomaron fotografías y colocaron un artefacto para detectar y medir el viento solar, un reflector de rayos láser y un sismógrafo. Armstrong y Aldrin clavaron en el suelo una bandera de Estados Unidos y hablaron por radio con el presidente Richard M. Nixon en la Casa Blanca. Comprobaron que no era difícil caminar y correr bajo una gravedad seis veces menor que la de la Tierra. Millones de personas pudieron seguir en directo la retransmisión vía satélite del acontecimiento.

Ya de regreso al módulo lunar, los astronautas se quitaron los trajes espaciales y descansaron unas horas antes de despegar. Abandonaron la Luna en vuelo vertical en el módulo de ascenso, dejando en la superficie lunar la parte inferior del módulo lunar que actuó como plataforma de lanzamiento. El módulo de ascenso se desechó tras acoplarse al módulo de comando, al que regresaron los dos astronautas. El regreso del Apolo 11 se realizó sin contratiempos y la nave cayó a las aguas del océano Pacífico, de donde fue recuperada, cerca de Hawai, el 24 de julio.

Ante la posibilidad de que organismos lunares contaminaran la Tierra, los astronautas se vistieron con trajes de aislamiento biológico antes de salir de la nave y fueron sometidos a una cuarentena de tres semanas. Su salud no se vio afectada.

8.1.    Apolo 12



El siguiente vuelo a la Luna empezó el 14 de noviembre de 1969 con el lanzamiento del Apolo 12, llevando a bordo a los astronautas Charles Conrad, Richard F. Gordon y Alan L. Bean. Una vez en órbita lunar, Conrad, piloto y comandante, y Bean, piloto del módulo lunar, pasaron a este último. Se posaron al norte de la cadena montañosa Riphaeus, a unos 180 m del lugar donde lo hiciera dos años antes el Suveyor 3.
Los dos astronautas exploraron las inmediaciones, en dos fases de casi cuatro horas cada una. Realizaron pruebas científicas, tomaron fotografías, recogieron muestras de suelo lunar y se llevaron algunos elementos de la sonda Surveyor 3 para examinarlos de regreso a la Tierra. Después de despegar y trasladarse al módulo de comando que pilotaba Gordon, amerizaron con éxito y fueron recogidos el 24 de noviembre. También fueron sometidos a cuarentena.
El Apolo 12 supuso un gran adelanto respecto del Apolo 11, en especial en la precisión del alunizaje, lo que llevó a planear la posibilidad de que el Apolo 13 alunizara en terreno más accidentado.

8.2.    Apolo 13


El 11 de abril de 1970 fue lanzado al espacio el Apolo 13, llevando a bordo al veterano Lovell, a Fred W. Haise y a John L. Swigert. El vehículo estuvo muy cerca del desastre cuando se averió en vuelo un tanque de oxígeno. Tuvieron que cancelar el alunizaje y, utilizando los sistemas de emergencia, se consiguió traerlos de vuelta a la Tierra, amerizando al sur de la isla Pago Pago, en el sur del océano Pacífico, el 17 de abril.

8.3.    Apolos 14 y 15


El Apolo 14 retomó la fallida misión de su predecesor y fue lanzado el 31 de enero de 1971, después de efectuar las modificaciones necesarias para evitar fallos como el ocurrido en el Apolo 13. Shepard y Edgar D. Mitchell alunizaron con éxito con el módulo lunar sobre la accidentada zona Fra Mauro, mientras que el astronauta Stuart A. Rossa permanecía en órbita lunar pilotando el módulo de comando. Shepard y Mitchell estuvieron más de nueve horas explorando una zona constituida por las rocas más antiguas de la Luna, recogiendo unos 43 kg de muestras geológicas e instalando instrumentos científicos. Regresaron sin problemas a la Tierra el 9 de febrero de 1971.
El Apolo 15 fue lanzado el 26 de julio de 1971, llevando a bordo a David R. Scott como comandante, a James B. Irwin como piloto del módulo lunar y a Alfred M. Worden como piloto del módulo de comando. Scott e Irwin pasaron dos días en la Luna y 18 horas fuera del módulo, al borde del Mar Imbrium, próximos a la fisura de Hadley, de 366 m de profundidad, y a la cadena montañosa de los Apeninos, una de las más altas de la Luna. Durante su exploración de la superficie lunar, de 18 horas y 37 minutos de duración, recorrieron más de 28,2 km con un vehículo eléctrico de exploración lunar de cuatro ruedas. Instalaron instrumentos científicos y recogieron unos 91 kg de rocas, entre ellas lo que se pensaba que era una muestra cristalina de la corteza original de la Luna, de una antigüedad de unos 4.600 millones de años. Dejaron una cámara de televisión para retransmitir el despegue y, antes de dejar la órbita lunar, soltaron un subsatélite de 35,6 kg, diseñado para transmitir información sobre campos magnéticos, gravitacionales y de alta energía del espacio lunar. Durante su regreso, Worden realizó un paseo espacial de 16 minutos, cuando la nave estaba a 315.400 km de la Tierra, una distancia récord para los paseos espaciales realizados hasta entonces. Los astronautas del Apolo 15 amerizaron sin problemas el 17 de agosto, a unos 530 km al norte de Hawai, y fue la primera tripulación de vuelta de la Luna que no se sometió a cuarentena.

8.4.    Apolo 16 y 17



El 16 de abril de 1972 los astronautas Young, Charles Moss Duke y Thomas Kenneth Mattingly partieron hacia la Luna en el Apolo 16 para explorar los altos de Descartes y las planicies de Cayley. Mientras Mattingly permanecía en órbita, los otros dos astronautas se posaron en la zona prevista el 20 de abril. Pasaron 20 horas y 14 minutos en la Luna realizando pruebas, recorriendo unos 26,6 km en el vehículo lunar y recogiendo más de 97 kg de muestras de rocas.
El programa lunar de Estados Unidos culminó con el Apolo 17 que viajó del 6 al 19 de diciembre de 1972. Durante el viaje de 13 días de duración, el veterano astronauta Cernan y el geólogo Harrison H. Schmitt pasaron 22 horas en la Luna y recorrieron 35 km en el vehículo lunar, explorando la zona del valle de Taurus-Littrow, mientras Ronald E. Evans permanecía en órbita.

9.    ESTACIONES ESPACIALES



Las primeras naves construidas como estaciones espaciales fueron la Salyut y el Skylab, diseñadas para permanecer largos periodos en la órbita terrestre mientras las tripulaciones iban y venían en otras naves. Esto daba la oportunidad de llevar a cabo numerosos y valiosos experimentos y observaciones astronómicas.

9.1.    Estaciones soviéticas



La estación soviética Salyut 1, de 18.600 kg, fue lanzada al espacio el 19 de abril de 1971. Tres días después, la nave Soyuz 10, con tres cosmonautas a bordo, se acopló a la estación espacial. Por algún motivo desconocido, los astronautas no entraron en la estación, se desacoplaron y regresaron a la Tierra. En junio, la nave Soyuz 11 se acopló a la estación Salyut 1 y su tripulación de tres hombres entró en ella para realizar un vuelo que alcanzó el récord de 24 días. En ese tiempo llevaron a cabo numerosos experimentos biológicos y estudios sobre recursos de la Tierra. Sin embargo, a su regreso a la Tierra ocurrió una tragedia y los tres cosmonautas soviéticos -Feorgi T. Dobrovolsky, Vladislav N. Volkov y Víktor I. Patsayev- perecieron a causa de una fuga de aire en una válvula. Su muerte fue instantánea al no tener puestos los trajes espaciales. El programa soviético sufrió otro contratiempo cuando la Salyut 2, lanzada en abril de 1973, quedó fuera de control y se perdieron partes de ella.
La Unión Soviética continuó su programa con la Salyut 3 (junio de 1974-enero de 1975), la Salyut 4 (diciembre de 1974-febrero de 1977) y la Salyut 5 (junio de 1976-agosto de 1977). La Salyut 6 (septiembre de 1977-julio de 1982) y la Salyut 7 fueron visitadas por numerosas tripulaciones internacionales de países como Cuba, Francia e India, así como por la primera mujer que realizó un paseo espacial: Svetlana Savitskaya, que participó en el viaje de la nave Soyuz T12, del 17 al 29 de julio de 1984. Uno de los vuelos más importantes del programa Soyuz/Salyut tuvo lugar en 1984, cuando los cosmonautas Leonid Kizim, Vladímir Soloviov y Oleg Atkov pasaron 237 días a bordo de la Salyut 7 antes de regresar a la Tierra; fue el vuelo más largo de la época. La estación Salyut 7 fue abandonada a mediados de 1986.
La estación espacial Mir fue construida por los soviéticos como sucesora de la Salyut y lanzada el 19 de febrero de 1986. Concebida por los soviéticos para ser la primera estación espacial permanentemente ocupada por una tripulación, cuenta con seis terminales de acoplamiento y tiene capacidad para alojar a dos cosmonautas. En 1987 el coronel Yuri Romanenko pasó 326 días a bordo de la estación, batiendo un nuevo récord de permanencia en el espacio. El 12 de abril de ese mismo año los soviéticos lograron con éxito acoplar a la estación la nave Kvant, un módulo astrofísico de 11 toneladas. La Kvant, equipada con cuatro telescopios de rayos X, estaba diseñada para unirse a la estación Mir y observar una supernova que había estallado recientemente en una galaxia cercana, la Gran Nube de Magallanes. Los rayos X del estallido de la estrella, bloqueados por la atmósfera terrestre, no podían detectarse desde la Tierra. Entre 1987 y 1988 los cosmonautas soviéticos Vladímir Titov y Musa Manarov lograron permanecer en el espacio un total de 366 días; sin embargo, en 1995 el médico Valeri Polyakov completó 438 días de permanencia, estableciendo un nuevo récord.
Cuatro años después, en 1999, la estación fue abandonada por falta de financiación y permaneció sin tripulación hasta abril del año 2000, cuando la ocuparon los cosmonautas Serguéi Zaliotin y Alexandr Kaleri, que llegaron a bordo de la misión Soyuz PM-30.

9.2.    Estaciones estadounidenses 



El programa estadounidense Skylab era más extenso y complejo que el de la Unión Soviética. El Skylab, lanzado con las dos primeras fases del cohete Saturno 5, pesaba 88.000 kg, frente a los 18.600 kg de la Salyut. En contraste con los 99 m2 estimados del interior de la estación soviética, el Skylab tenía 357 m2, unas 3,5 veces mayor. El Skylab funcionaba como laboratorio en órbita terrestre. Se utilizó para realizar observaciones astronómicas del Sol, así como multiespectrales de la Tierra, y llevar a cabo numerosos experimentos tecnológicos y científicos, como el crecimiento metálico-cristalino en ausencia de gravedad, además de estudios médicos de larga duración sobre la salud de sus tres tripulantes.
El Skylab se averió durante su lanzamiento el 25 de mayo de 1973, pero su tripulación, formada por el veterano astronauta Conrad, por Joseph P. Kerwin y por Paul J, Weitz, lo reparó durante un paseo espacial. El vuelo duró 28 días. Una segunda tripulación pasó 59 días y una tercera, 84. El programa Skylab se consideró un éxito. Se emplearon más de 740 horas en la observación del Sol con telescopios, se tomaron más de 175.000 fotografías de este astro y se obtuvieron unos 64 km de cinta con datos, además de 46.000 fotografías de la Tierra. El 11 de julio de 1979, al cumplir con su órbita número 34.981, el Skylab cayó a la Tierra; sus fragmentos ardiendo se precipitaron sobre zonas habitadas del oeste de Australia y sobre el océano Índico.

9.3.    Estación Espacial Internacional 



El gobierno de Estados Unidos, en cooperación con Rusia, Canadá, Japón y los países miembros de la Agencia Espacial Europea, proyectó la construcción de una estación espacial para ser ensamblada en el espacio. La denominada Estación Espacial Internacional (ISS, siglas en inglés) es un proyecto de elevado coste que se espera esté finalizado en el año 2004.
La etapa de diseño de este histórico proyecto duró una década, entre 1983 y 1993, año en el que la NASA firmó un acuerdo de colaboración con la Agencia Espacial Rusa. La ISS, cuyo coste estimado es de unos 60.000 millones de dólares, será cinco veces mayor que la estación rusa Mir y estará formada por más de 100 elementos. Para su construcción serán necesarios más de 40 vuelos espaciales y 1.100 horas de actividades extra-vehiculares, una cifra superior a todas las invertidas hasta la fecha en las misiones espaciales tripuladas. La ISS podrá acoger a una tripulación permanente de siete astronautas.
El 20 de noviembre de 1998 la Agencia Espacial Rusa puso en órbita la primera sección de la ISS, el Zariá (’amanecer’), un módulo que servirá como fuente de energía y propulsión para otras piezas durante el periodo de construcción. La segunda pieza, de fabricación estadounidense y denominada Unity, salió de la Tierra dos semanas después a bordo de la lanzadera espacial Endeavour. El 6 de diciembre ambos módulos fueron acoplados en órbita por el equipo de astronautas del Endeavour.
La ISS es el intento más ambicioso para establecer un lugar en el que puedan habitar seres humanos fuera de la atmósfera terrestre. De tener éxito se convertiría también en un importante centro de investigación, así como en un punto de escala para los viajes de exploración a otros cuerpos del Sistema Solar. Una vez completada, está previsto que se mantenga operativa entre unos 10 y 15 años.

10.    PROGRAMAS ACTUALES Y FUTUROS



A principios de la década de 1980, el Sistema de Transporte Espacial (STS, en inglés), más conocido como la lanzadera o transbordador espacial, se convirtió en el mayor programa espacial de Estados Unidos. Al surgir problemas con el STS se decidió emplear vehículos de lanzamiento desechables (ELVs, en inglés). En la década de 1990 Estados Unidos tenía previsto sustituir la lanzadera espacial por una nueva nave, la X-30, pero por dificultades presupuestarias se optó por utilizar una combinación de ELVs y lanzaderas para poner en órbita satélites y naves espaciales.

10.1.    Lanzadera espacial 



La lanzadera es un avión espacial tripulado de múltiples usos, diseñado para despegar y entrar en órbita llevando naves de hasta 3.000 kg con siete tripulantes y pasajeros. La parte superior de la nave tenía una vida estimada de unas 100 misiones y a su regreso a la Tierra sería capaz de realizar maniobras de aterrizaje. Su versatilidad y su capacidad para desplegar, rescatar y reparar satélites en órbita hizo que sus defensores la consideraran un gran adelanto en la exploración del espacio. Sin embargo, sus detractores estimaron que la NASA estaba poniendo demasiada confianza en la nave, en detrimento de otras misiones no tripuladas.

La primera misión de la lanzadera espacial, pilotada por John W. Young y Robert Crippen a bordo de la nave Columbia, se inició el 1 de abril de 1981. Se trataba de un vuelo de pruebas en vacío. El quinto vuelo de la lanzadera espacial fue la primera misión real. Los astronautas de la Columbia desplegaron dos satélites de comunicaciones comerciales entre el 11 y 16 de noviembre de ese año. Entre los siguientes vuelos dignos de mención destacan el séptimo, entre cuya tripulación se encontraba la primera mujer astronauta estadounidense, Sally K. Ride; el noveno, entre el 28 de noviembre y el 8 de diciembre de 1983, que transportaba el primer Spacelab de la Agencia Espacial Europea; el undécimo, entre el 7 y el 13 de abril de 1984, durante el cual se rescató un satélite, se reparó y se volvió a desplegar; y el decimocuarto, entre el 8 y el 14 de noviembre de 1984, que rescató dos costosos satélites averiados para traerlos a la Tierra.

A pesar de estos éxitos, la lanzadera se fue retrasando en cuanto a los lanzamientos programados, pasó a ser utilizada cada vez con mayor frecuencia en pruebas militares, y empezó a sufrir la fuerte competencia del programa de vuelos no tripulados Ariane de la Agencia Espacial Europea en la puesta en órbita de satélites comerciales. Por otro lado, el 28 de enero de 1986 la lanzadera Challenger estalló al minuto de haber despegado debido a un fallo en una junta de sus cohetes. Murieron siete astronautas: el comandante Francis R. Scobee, el piloto Michael J. Smith y los especialistas de la misión Judith A. Resnik, Ellison S. Onizuka, Ronald E. McNair, Gregory B. Jarvis y Christa McAuliffe. Esta última había sido seleccionada años atrás para ser la primera maestra en el espacio y la representante civil del programa de la lanzadera. La tragedia paralizó completamente el programa de vuelos hasta que se analizaron y volvieron a diseñar todos los sistemas. Una comisión presidencial, encabezada por el ex secretario de Estado William Rogers y el veterano astronauta Neil Armstrong, culpó del accidente a la NASA y a sus sistemas de mantenimiento del control de calidad.

Como consecuencia del desastre del Challenger se volvieron a diseñar las juntas de los cohetes para evitar que se reprodujera el accidente del 28 de enero. La reanudación de los vuelos de la lanzadera tuvo lugar el 29 de septiembre de 1988 con el Discovery, que llevaba cinco astronautas a bordo. En esta misión se puso en órbita el satélite de comunicaciones de la NASA TDRS-3 y se llevaron a cabo numerosos experimentos. El éxito de esta misión animó a Estados Unidos a continuar su programa de vuelos espaciales. En 1990 la lanzadera desplegó el telescopio espacial Hubble, que había costado 1.500 millones de dólares, pero por un defecto del espejo principal no pudo funcionar con la resolución prevista hasta que fue reparado en 1993. A partir de 1995 la lanzadera realizó también una serie de misiones a la estación Mir.

10.2.    Perspectivas


Con los contratiempos que supusieron el mal funcionamiento del telescopio espacial Hubble y las fugas en los tanques de combustible de hidrógeno de la lanzadera espacial, no parecía que el programa espacial de Estados Unidos pudiera llegar a cumplir sus objetivos para la década de 1990. Además de la estación espacial tripulada, uno de esos objetivos era la construcción de la nave X-30, proyectada para despegar como los aviones convencionales y autopropulsarse hasta llegar a la zona orbital con potentes estatorreactores. Todavía ha de pasar bastante tiempo antes de abordar otros objetivos más ambiciosos, como el de establecer una base en la Luna y enviar astronautas a explorar el planeta Marte.

11. REPORTAJE FOTOGRÁFICO



1688.jpg

Sputnik 1
El Sputnik 1, lanzado por la Unión Soviética el 4 de octubre de 1957, fue el primer satélite artificial que se puso en órbita alrededor de la Tierra. Este lanzamiento histórico inició una era de programas intensivos de la Unión Soviética y de Estados Unidos, que se dio en llamar la ‘carrera espacial’. En las tres décadas siguientes se construyeron cientos de sondas, satélites y otras misiones para seguir al Sputnik en su búsqueda de los prodigios y del potencial práctico del espacio.

1689.jpg

Voyager 2 en su aproximación a Urano
En esta imagen podemos ver la aproximación final de la nave espacial no tripulada Voyager 2 hacia el planeta Urano el 24 de enero de 1986. El Voyager 2 descubrió cuatro nuevos anillos y diez nuevas lunas alrededor de Urano.

1690.jpg

Paseo espacial en un aparato pilotado
El astronauta Bruce McCandless flota libremente sobre la Tierra con un aparato pilotado durante una misión espacial. McCandless ayudó a diseñar y fue el primero en volar con este aparato, que es propulsado por pequeños impulsores de nitrógeno que el astronauta controla con las manos. Como no hay un cable que lo una a la nave espacial, permite una mayor movilidad.

1691.jpg
Reparación del telescopio espacial Hubble
Los astronautas, a bordo de la lanzadera espacial estadounidense Endeavour, repararon satisfactoriamente el telescopio espacial Hubble, un telescopio con base en el espacio, que orbita sobre la atmósfera terrestre. Lanzado en 1990, el telescopio tenía un espejo principal deteriorado que dificultaba su funcionamiento. La reparación se llevó a cabo durante una misión de 11 días en diciembre de 1993, que incluyó cinco paseos espaciales.

1692.jpg

Trabajo en la nave
El astronauta Robert Cabana se prepara para utilizar una cámara especial en la lanzadera Discovery. La cámara es uno de los muchos aparatos que se llevan en todos los vuelos para registrar los distintos aspectos de la misión. Aunque los astronautas y su equipo flotan libremente cuando se apagan los motores del cohete, se mantienen en órbita por una fuerza gravitatoria casi tan intensa como la de la Tierra.

1693.jpg

Saturno 5
Un cohete Saturno 5 sale de su rampa de lanzamiento en las primeras fases de la misión Apolo 17. Con más de 110 m de altura, los cohetes multifase son propulsados por hidrógeno líquido. Además de ser muy utilizados en el programa Apolo, uno de los enormes cohetes Saturno 5 se utilizó para lanzar, en 1973, el Skylab de la NASA.

1694.jpg

Satélite de órbita polar
El satélite Nimbus rodea la Tierra en una órbita que pasa por los polos norte y sur varias veces al día, fotografiando la superficie a su paso. Como la Tierra gira, a cada pase el satélite produce un nuevo conjunto de imágenes, de forma que se puede cubrir todo el planeta. La información gráfica sobre la atmósfera terrestre y los océanos se devuelve a la superficie, donde se utiliza para controlar los cambios en el medio ambiente.

1695.jpg

Satélite meteorológico GOES
Los meteorólogos utilizan datos de los satélites meteorológicos para predecir el tiempo y prevenir sobre las tormentas si es necesario. Los satélites como el GOES (Satélite Ambiental Operativo Geoestacionario) recogen información meteorológica y de rayos infrarrojos sobre la atmósfera y los océanos. Una cámara del GOES apunta continuamente a la Tierra, transmitiendo imágenes de las nubes tanto de día como de noche. Aquí, están introduciendo el satélite GOES-C en el alojamiento de carga de pago a bordo de un cohete Delta.

1696.jpg
Misión Máxima Solar
El satélite Misión Máxima Solar era un satélite diseñado para estudiar la radiación solar. Lanzado a comienzos de 1980, el aparato falló tres años después. Fue reparado y relanzado por una lanzadera espacial en 1984 y recogió información hasta 1988, cuando sus instrumentos se averiaron por una erupción solar. La información recogida por el satélite indicaba que la corona del Sol experimenta inesperadamente gran cantidad de una violenta actividad relacionada con las manchas solares. Los datos también mostraron que las manchas solares reducen la cantidad de energía solar que llega a la atmósfera de la Tierra.

1697.jpg

Vehículo explorador Sojourner
La nave espacial estadounidense Mars Pathfinder aterrizó en el planeta Marte en julio de 1997. Transportaba un pequeño vehículo explorador, el Sojourner, que recorrió la superficie de Marte próxima al módulo de aterrizaje y analizó la composición química de las rocas del planeta. El Sojourner aparece aquí todavía a bordo de la nave, en una fotografía tomada por las cámaras de ésta. El material blanco que se ve detrás del vehículo es lo que queda de las bolsas de aire utilizadas para amortiguar su caída.

1698.jpg

Vehículo explorador Lunokhod
En 1970 y 1973 el programa soviético Luna envió dos vehículos exploradores a nuestro satélite. Estos vehículos de ocho ruedas caían por las rampas para abandonar la nave nodriza (Luna 17 y Luna 21). Los Lunokhod cargaban cámaras, analizadores de suelos y baterías solares.

1700.jpg

John H. Glenn
El 20 de febrero de 1962, a bordo de la nave Friendship 7 del programa Mercury, el astronauta John H. Glenn fue el primer estadounidense que realizó un vuelo orbital. Glenn regresó al espacio 36 años más tarde a bordo del transbordador Discovery.

1702.jpg

Trabajos en la Luna
En el lugar de alunizaje Taurus-Littrow, el astronauta Harrison H. Schmitt detuvo su vehículo de exploración lunar. Él y su compañero, el astronauta Eugene A. Ceman, recogieron 116 kg de muestras lunares durante la misión Apolo 17. Lanzado el 6 de diciembre de 1972, el Apolo 17 fue la última misión del programa espacial Apolo.

1703.jpg

Estación espacial soviética Mir
La compleja estación espacial soviética Mir, vista aquí desde una nave espacial, fue puesta en órbita el 19 de febrero de 1986. El 22 de marzo de 1995, Valeri Polyakov completó una estancia de 437 días a bordo de la Mir.
1704.jpg
Skylab
Esta vista del Skylab muestra la estación espacial sobre la Tierra cubierta de nubes. Lanzado por Estados Unidos en 1973, el Skylab orbitó alrededor de la Tierra durante seis años y proporcionó datos científicos sobre el Sol y la Tierra. Durante tres misiones distintas, los astronautas vivieron a bordo del Skylab y realizaron experimentos científicos y controles de su propia salud en el espacio. Esta fotografía fue tomada por la tripulación del módulo de servicio de mando del Skylab durante un vuelo de paso final antes de regresar.

17051.jpg

Lanzadera espacial Columbia
Una lente de ojo de pez tomó esta fotografía de la cubierta de vuelo de la lanzadera espacial Columbia. El comandante y el piloto están sentados ante el panel de instrumentos.

1706.jpg

Autor:

Mire





Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License