Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Sistema Solar parte 3 - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




PLANETAS EXTERIORES



Los siguientes planetas (Júpiter, Saturno, Urano, Neptuno y Plutón, con sus respectivos satélites), forman parte de un conjunto llamado planetas exteriores. Salvo Plutón, los demás planetas tienen características semejantes. Son de tamaño grande, se componen de hidrógeno, hielo y helio, además poseen muchas lunas.
Júpiter es el mayor de los planetas. Su atmósfera de hidrógeno y helio contiene nubes de color pastel y su inmensa magnetosfera, anillos y satélites, lo convierten en un sistema planetario en sí mismo. Saturno rivaliza con Júpiter, con una estructura de anillos más complicada y con mayor número de satélites, entre los que se encuentra Titán, con una densa atmósfera. Urano y Neptuno tienen poco hidrógeno en comparación con los dos gigantes; Urano, también con una serie de anillos a su alrededor, se distingue porque gira a 98° sobre el plano de su órbita. Plutón parece similar a los satélites más grandes y helados de Júpiter y Saturno;
está tan lejos del Sol y es tan frío que el metano se hiela en su superficie.

Júpiter



Júpiter es el quinto planeta desde el Sol, además de ser el mayor planeta conocido. Recibió el nombre del rey de los dioses de la mitología romana. Júpiter es 1.400 veces más voluminoso que la Tierra, pero su masa es sólo 318 veces la de nuestro planeta. La densidad media de Júpiter es como una cuarta parte de la densidad de la Tierra, lo que indica que este planeta gigante debe estar compuesto de gases más que de metales y rocas como la Tierra y otros planetas.
Da una vuelta alrededor del Sol cada 11,9 años a una distancia orbital media de 778 millones de kilómetros. Tarda 9,9 horas en dar una vuelta alrededor de su eje. Esta rápida rotación produce un engrosamiento ecuatorial que se aprecia cuando se mira el planeta a través de un telescopio. La rotación no es uniforme. Las bandas que se ven en Júpiter se deben a la presencia de fuertes corrientes atmosféricas que reflejan los diferentes periodos de rotación en las distintas latitudes. Estas bandas se aprecian más debido a los colores pastel de las nubes. Estos colores se ven también en la llamada Gran Mancha Roja, de forma oval y con variaciones de color desde rojo ladrillo hasta rosa. Los colores proceden de rastros de compuestos formados por la luz ultravioleta, las tormentas y el calor. Algunos de estos compuestos pueden ser similares a los de las moléculas orgánicas que se desarrollaron en la Tierra como preludio del origen de la vida.


Composición, estructura y campo magnético


El conocimiento científico de Júpiter se enriqueció mucho en 1979 a partir de los satisfactorios lanzamientos realizados por la NASA de las sondas espaciales Voyager 1 y Voyager 2. Las observaciones espectroscópicas realizadas desde la Tierra habían demostrado que la mayor parte de la atmósfera de Júpiter estaba compuesta de hidrógeno molecular, H2. Los estudios de infrarrojos de la sonda espacial Voyager indicaron que el 87% de la atmósfera de Júpiter estaba compuesta de H2, y que el helio, He, formaba la mayor parte del 13% restante.

Por la baja densidad observada se deduce que el interior de Júpiter ha de tener, esencialmente, la misma composición que la atmósfera. Por lo tanto, en apariencia, este inmenso mundo está compuesto de los dos elementos más ligeros y más abundantes del Universo, una composición similar a la del Sol y a la de otras estrellas. En consecuencia, Júpiter puede corresponder a una condensación directa de una parte de la nebulosa solar primordial, la gran nube de gas y polvo interestelar a partir de la que se formó todo el Sistema Solar hace unos 4.600 millones de años.

Los científicos también recogieron una gran cantidad de información sobre Júpiter cuando los fragmentos del cometa Shoemaker-Levy 9 se estrellaron contra el planeta en julio de 1994. Las colisiones agitaron la atmósfera de Júpiter, calentando los gases interiores hasta la incandescencia y sacándolos a la superficie. Los astrónomos capturaron imágenes detalladas de estos gases desde telescopios situados en la Tierra y en el espacio. Utilizaron espectroscopios para el análisis de los gases con el fin de verificar y ampliar sus conocimientos sobre la composición de la atmósfera del planeta.
Júpiter emite más o menos el doble de energía que la que recibe del Sol. La fuente de esta energía es aparentemente una lenta contracción gravitacional de todo el planeta. Júpiter tendría que ser 100 veces mayor para que su masa pudiera iniciar reacciones nucleares como las del Sol y las estrellas.

La atmósfera turbulenta y con muchos tipos de nubes de Júpiter es, por tanto, fría. Con gran abundancia de hidrógeno, predominan las moléculas que contienen este elemento, como el metano, el amoníaco y el agua. Las fluctuaciones periódicas de temperatura en la atmósfera superior de Júpiter revelan una pauta en el cambio de los vientos como la de la región ecuatorial de la estratosfera terrestre. Las fotografías con cambios secuenciales de las nubes jovianas sugieren el nacimiento y deterioro de gigantescos sistemas tormentosos ciclónicos. Los datos obtenidos por la sonda espacial de la misión Galileo han contribuido a un mayor conocimiento del planeta.
El amoníaco se congela a las bajas temperaturas de la atmósfera superior (-125 °C) formando las nubes blancas de cirros que se ven en muchas fotografías del planeta transmitidas por la sonda espacial Voyager. El hidrosulfuro de amonio se puede condensar a niveles más bajos. Las nubes de esta sustancia, coloreadas por otros compuestos, pueden contribuir a la capa de nubes oscuras que se extiende por el planeta. La temperatura en la parte superior de estas nubes es de -50 °C y la presión atmosférica es alrededor del doble de la presión atmosférica de la Tierra a nivel del mar. A través de agujeros en esta capa de nubes se escapa la radiación de una región en donde se alcanzan temperaturas de 17 °C. Mediante radiotelescopios sensibles a la radiación que penetra a través de las nubes se ha detectado que la temperatura aumenta al descender hacia las capas más profundas.

Aunque sólo se puede ver directamente la parte más externa del planeta, los cálculos muestran que la temperatura y la presión aumentan hacia el interior del planeta. La presión alcanza valores en los que el hidrógeno se licua y después adopta un estado metálico altamente transmisor. En el centro puede existir un núcleo de material parecido al de la Tierra.
En la profundidad de estas capas se genera el campo magnético joviano. En la superficie de Júpiter este campo es 14 veces más fuerte que el de la Tierra. Su polaridad es opuesta a la de la Tierra, de forma que una brújula terrestre que se trasladara a Júpiter apuntaría al Sur. El campo magnético es el responsable de que enormes cinturones de radiación de partículas cargadas retenidas rodeen el planeta a una distancia de 10 millones de kilómetros.

Satélites y anillos de Júpiter



Hasta el momento se han descubierto dieciséis satélites de Júpiter. En 1610, Galileo descubrió los cuatro mayores. Fueron recibiendo los nombres de los amantes mitológicos de Júpiter (o Zeus en el panteón griego): Ío, Europa, Ganimedes y Calisto. Esta tradición se ha seguido para denominar los demás satélites o lunas. Observaciones más recientes han demostrado que las densidades medias de las lunas mayores siguen la tendencia aparente del propio Sistema Solar. Ío y Europa, cercanos a Júpiter, son densos y rocosos como los planetas interiores. Ganimedes y Calisto, que se encuentran a más distancia, están compuestos principalmente de hielo de agua y tienen densidades más bajas. Durante la formación de satélites y planetas, su proximidad al cuerpo central (el Sol o Júpiter) evita, claramente, que se condensen las sustancias más volátiles.

Calisto es casi tan grande como Mercurio, y Ganimedes es mayor que Mercurio. Si describieran sus órbitas alrededor del Sol serían considerados planetas. Las cortezas heladas de estos dos cuerpos están marcadas por numerosos cráteres, las marcas de un antiguo bombardeo, probablemente del núcleo de un cometa, similar al bombardeo de asteroides que dejó señales en la Luna de la Tierra. Por el contrario, la superficie de Europa es muy lisa. Está cubierta por una capa de hielo (que puede que cubra una zona global de agua) que emergió del interior del satélite después del bombardeo meteorítico primordial. Una intrincada red de estrías poco profundas cubre la superficie de hielo.
Un equipo de astrónomos de la Universidad John Hopkins (EEUU) descubrió recientemente que Ganimedes tiene una atmósfera de oxígeno muy tenue, con una presión comparable a la de la atmósfera terrestre a una altura de unos 400 metros. Antes de este descubrimiento, estos mismos científicos habían detectado también un tenue velo de oxígeno alrededor de Europa.

El satélite más notable es, sin duda, Ío. Su superficie presenta un aspecto muy contrastado: del amarillento al castaño oscuro y áreas blancas con manchas negras. Ío es sacudido por un vulcanismo impulsado por la dispersión de la energía mareal del interior del satélite. Diez volcanes estaban en erupción durante los vuelos espaciales del Voyager en 1979 y, desde entonces, se han detectado otras erupciones. Los orificios emiten dióxido de azufre (SO2) y éste se condensa en la superficie formando una atmósfera local, transitoria. Las regiones blancas son SO2 sólido; las otras marcas están producidas, presumiblemente, por otros compuestos de azufre.
Las restantes lunas son mucho más pequeñas y se han estudiado menos que los cuatro satélites de Galileo. Los ocho satélites externos están en dos grupos de cuatro y pueden representar cuerpos apresados.
Ya cerca del planeta, la nave espacial Voyager descubrió un débil sistema de anillos. El material de estos anillos tiene que estar en continua renovación porque se le observa moviéndose en dirección al planeta. Este material puede ser el resultado de la desintegración de pequeños satélites que se mueven dentro de los anillos. El satélite Metis está exactamente en el límite externo de los anillos y podría ser una fuente de ese material.

Saturno



Saturno es el sexto planeta desde el Sol y el segundo más grande del Sistema Solar. La peculiaridad más conocida de Saturno es la de estar rodeado de un sistema de anillos, descubierto en 1610 por Galileo utilizando uno de los primeros telescopios. Galileo no comprendió que los anillos estuvieran separados del cuerpo central del planeta, así que los describió como ‘asas’ (ansae). Fue el astrónomo holandés Christiaan Huygens el primero en describirlos correctamente. En 1655, para no perder su derecho de prioridad mientras verificaba sus propuestas, Huygens escribió un anagrama que, cuando se ordenaba, formaba una sentencia latina cuya traducción dice así: “Está circundado por un delgado anillo achatado, inclinado hacia la eclíptica y sin tocar en ningún punto al planeta”. Los anillos, que se nombraron por el orden en que se descubrieron, se conocen como los anillos D, C, B, A, F, G y E. Hoy se sabe que contienen más de 100.000 pequeños anillos, todos ellos girando en torno al planeta.

Exploración del sistema de Saturno



Visto desde la Tierra, Saturno aparece como un objeto amarillento, uno de los más brillantes en el cielo nocturno. Observado a través de un telescopio, los anillos A y B se ven fácilmente, mientras que los D y E sólo se ven en condiciones atmosféricas óptimas. Telescopios de gran sensibilidad situados en la Tierra han detectado nueve satélites, y en la niebla de la envoltura gaseosa de Saturno se distinguen pálidos cinturones y estructuras de bandas paralelas al ecuador.
Tres naves espaciales estadounidenses han incrementado enormemente el conocimiento del sistema de Saturno. La sonda Pioneer 11 fue lanzada en septiembre de 1979, seguida por el Voyager 1 en noviembre de 1980 y el Voyager 2 en agosto de 1981. Estas naves espaciales llevaban cámaras e instrumentos para analizar las intensidades y polarizaciones de la radiación en las regiones visible, ultravioleta, infrarroja y de radio del espectro electromagnético. Estas naves también estaban equipadas con instrumentos para el estudio de los campos magnéticos y para la detección de partículas cargadas y granos de polvo interplanetario.

El interior de Saturno



La densidad media de Saturno es una octava parte de la de la Tierra, debido a que el planeta está compuesto fundamentalmente de hidrógeno. El enorme peso de la atmósfera de Saturno hace que la presión atmosférica se incremente a gran velocidad hacia el interior, donde el hidrógeno se hace líquido. Hacia el centro del planeta el hidrógeno líquido se condensa en hidrógeno metálico, que es un conductor eléctrico. Las corrientes eléctricas presentes en este hidrógeno metálico son las responsables del campo magnético del planeta. En el centro de Saturno se han consolidado, probablemente, elementos pesados formando un pequeño núcleo rocoso a una temperatura cercana a los 15.000 °C. Tanto Júpiter como Saturno siguen asentándose por la gravitación, siguiendo su original acreción de la nebulosa de gas y polvo de la que se formó el Sistema Solar hace más de 4.000 millones de años. Esta contracción genera calor, haciendo que Saturno lo irradie en el espacio en una proporción tres veces mayor que la que recibe del Sol.


La atmósfera de Saturno



Los principales componentes de la atmósfera de Saturno son el hidrógeno (88% en masa) y el helio (11%); el resto comprende trazas de metano, amoníaco, cristales de amoníaco y otros gases como etano, acetileno y fosfina. Las imágenes del Voyager mostraron remolinos y corrientes turbulentas de nubes que tenían lugar a gran profundidad en una niebla mucho más densa que la de Júpiter debido a la menor temperatura de Saturno. Las temperaturas de la parte superior de la nube de Saturno están cercanas a -176 °C, unos 27 °C más bajas que las de Júpiter en los mismos puntos.
Los movimientos de las nubes tormentosas de Saturno muestran que el periodo de rotación de la atmósfera cerca del ecuador es de 10 horas y 11 minutos. Las emisiones de radio que se han detectado procedentes del cuerpo del planeta indican que el cuerpo de Saturno y su magnetosfera tienen un periodo de rotación de 10 horas, 39 minutos y 25 segundos. La diferencia aproximada de 28,5 minutos entre estos dos periodos indica que los vientos ecuatoriales de Saturno alcanzan velocidades de 1.700 km/h aproximadamente.
En 1988, a partir del estudio de las fotografías del Voyager, los científicos determinaron un elemento atmosférico extraño alrededor del polo norte de Saturno. Lo que podría ser una configuración de onda estacionaria, reproducida seis veces alrededor del planeta, hace que parezca que las bandas de nubes, a cierta distancia del polo, forman un hexágono enorme y permanente.

La magnetosfera



El campo magnético de Saturno es mucho más débil que el de Júpiter, y su magnetosfera es como una tercera parte de la de Júpiter. La magnetosfera de Saturno consta de un conjunto de cinturones de radiación toroidales en los que están atrapados electrones y núcleos atómicos. Los cinturones se extienden unos 2 millones de kilómetros desde el centro de Saturno, e incluso más, en dirección contraria al Sol, aunque el tamaño de la magnetosfera varía dependiendo de la intensidad del viento solar (el flujo desde el Sol de las partículas cargadas). El viento solar y los satélites y anillos de Saturno suministran Las partículas que están atrapadas en los cinturones de radiación. El periodo de rotación de 10 horas, 39 minutos y 25 segundos del interior de Saturno fue medido por el Voyager 1 mientras atravesaba la magnetosfera, que gira de forma sincrónica con el interior de Saturno. La magnetosfera interactúa con la ionosfera, la capa superior de la atmósfera de Saturno, causando emisiones aurorales de radiación ultravioleta.
Rodeando la órbita de Titán, el mayor satélite de Saturno, y extendiéndose hasta la órbita de Rea, se encuentra una enorme nube toroidal de átomos de hidrógeno neutro. Un disco de plasma, compuesto de hidrógeno y posiblemente de iones oxígeno, se extiende desde fuera de la órbita de Tetis hasta casi la de Titán. El plasma gira en sincronía casi perfecta con el campo magnético de Saturno.

El sistema de anillos



Los anillos visibles se extienden hasta una distancia de 136.200 km del centro de Saturno, pero en muchas regiones pueden tener sólo 5 m de grosor. Se cree que constan de agregados de roca, gases helados y hielo de agua en tamaños que pueden variar desde menos de 0,0005 cm de diámetro hasta 10 m (desde el tamaño de una partícula de polvo hasta el de una gran piedra). Un instrumento a bordo del Voyager 2 registró más de 100.000 anillos pequeños.
La aparente separación entre los anillos A y B se denomina división de Cassini, en honor a su descubridor, el astrónomo francés Giovanni Cassini. Las cámaras de televisión del Voyager reflejaron cinco nuevos anillos débiles dentro de la división de Cassini. Los anchos anillos B y C parece que constan de cientos de pequeños anillos, algunos ligeramente elípticos que muestran variaciones de densidad ondulante. La interacción gravitacional entre anillos y satélites, que produce estas ondas de densidad, sigue sin comprenderse del todo. El anillo B aparece brillante cuando se ve desde el lado iluminado por el Sol, pero oscuro desde el otro lado porque es lo bastante denso como para bloquear la mayor parte de la luz del Sol. Las imágenes del Voyager revelan también en el anillo B configuraciones radiales.

Satélites



Se han descubierto más de 20 satélites en la órbita de Saturno. Sus diámetros van de 20 a 5.150 km. Constan, fundamentalmente, de las sustancias heladas más ligeras que predominaron en las partes externas de la nebulosa de gas y polvo de la que se formó el Sistema Solar. Los cinco mayores satélites interiores -Mimas, Encélado, Tetis, Dione y Rea- son más o menos de forma esférica y compuestos en su mayor parte de hielo de agua. El material rocoso puede constituir hasta un 40% de la masa de Dione. Las superficies de los cinco presentan cráteres producidos por impactos de meteoritos. Encélado tiene una superficie más lisa que los otros y la zona que presenta menos cráteres en su superficie tiene algunos cientos de millones de años. (Posiblemente Encélado sigue soportando una actividad tectónica). Los astrónomos suponen que Encélado suministra partículas al anillo E, el cual está muy cerca de la órbita del satélite. Mimas, con una superficie nada lisa, muestra un cráter cuyo diámetro es igual a la tercera parte del diámetro del propio satélite. Tetis tiene también un gran cráter y un valle de 100 km de ancho que se extiende más de 2.000 km a través de su superficie. Tanto Dione como Rea tienen pequeñas bandas brillantes en sus superficies ya muy reflectivas. Algunos científicos suponen que fueron causadas bien por hielos expulsados de cráteres por impactos meteóricos, o por hielo puro procedente del interior.

Se han descubierto diversos satélites pequeños fuera del anillo A y cerca de los anillos F y G. Así mismo, se han descubierto cuatro satélites de Tetis, llamados Troyanos y uno de Dione. El término Troyano se aplica a cuerpos como los satélites o asteroides que se producen en regiones de estabilidad que preceden o siguen a un cuerpo en su órbita alrededor de un planeta o del Sol.
Los satélites externos Hyperion e Iapeto también constan, fundamentalmente, de hielo de agua. Iapeto tiene una región muy oscura que contrasta con la mayor parte de su superficie, que es brillante. Esta región oscura y la rotación del satélite son la causa de las variaciones de brillo que observó Cassini en 1671. Phoebe, el satélite más alejado, se mueve en una órbita retrógrada muy inclinada hacia el ecuador de Saturno; es muy probable que se trate de un cometa capturado por el campo gravitatorio del planeta.
Entre los satélites interiores y exteriores orbita Titán, la luna mayor de Saturno. Su diámetro es de unos 5.150 km, mayor, incluso, que el del planeta Mercurio. Sin embargo, el diámetro de Titán no es bien conocido porque tiene una densa niebla anaranjada que oculta su superficie. La atmósfera de Titán tiene un espesor de unos 300 km, y está compuesta de nitrógeno con trazas de metano, etano, acetileno, etileno, cianuro de hidrógeno, monóxido de carbono y dióxido de carbono. La temperatura en la superficie es de -182 °C, y el metano o etano pueden estar presentes en forma de lluvia, nieve, hielo o vapor. El interior de Titán consta, probablemente, de rocas y hielo de agua en las mismas cantidades. No se han detectado campos magnéticos. El hemisferio sur es algo más brillante, y el único detalle visible es un anillo oscuro en la región del polo norte.

Urano



Es un planeta de gran magnitud, séptimo en cuanto a distancia al Sol, que gira fuera de la órbita de Saturno y dentro de la órbita de Neptuno. Es el sexto en magnitud, lo que posibilita su observación a simple vista. Urano fue descubierto accidentalmente en 1781 por el astrónomo británico William Herschel y originariamente se le llamó Georgium Sidus (Estrella de Jorge) en honor a su mecenas real, Jorge III. Más tarde, durante un tiempo se le llamó Herschel en honor a su descubridor. El nombre Urano, que lo propuso por vez primera el astrónomo alemán Johann Elert Bode, se comenzó a utilizar a finales del siglo XIX.

Urano tiene un diámetro de 52.200 km y su distancia media al Sol es de 2.870 millones de km. Urano tarda 84 años en completar una órbita y 17 horas y 15 minutos en una rotación completa sobre su eje, que está inclinado 98° con relación al plano de la órbita del planeta alrededor del Sol. La atmósfera de Urano está compuesta fundamentalmente de hidrógeno y helio, con algo de metano. A través del telescopio, el planeta aparece como un disco verde azulado con un pálido contorno verde. En comparación con la Tierra, Urano tiene una masa 14,5 veces mayor, un volumen 67 veces mayor y una gravedad 1,17 veces mayor. No obstante, el campo magnético de Urano sólo es una décima parte más fuerte que el de la Tierra, con un eje inclinado 55° en relación con el eje de rotación. La densidad de Urano es aproximadamente 1,2 veces la del agua.
En 1977, mientras se observaba la ocultación de una estrella detrás del planeta, el astrónomo estadounidense James L. Elliot descubrió la presencia de cinco anillos que rodeaban a Urano en el plano de su ecuador. Los llamó Alpha, Beta, Gamma, Delta y Epsilon (empezando por el anillo más interno). Forman un cinturón de 9.400 km de ancho, extendiéndose hasta una distancia de 51.300 km del centro del planeta. En enero de1986, durante el viaje exploratorio del Voyager 2 se descubrieron cuatro anillos más.

Además de los anillos, Urano tiene 15 satélites (5 descubiertos por medio del telescopio y 10, por el Voyager 2); todos giran alrededor de su ecuador y se mueven en el mismo sentido en el que gira el planeta. Las dos lunas mayores, Oberon y Titania, las descubrió Herschel en 1787. Las dos siguientes, Umbriel y Ariel fueron descubiertas por el astrónomo británico William Lassell en 1851. Miranda, el satélite más interior conocido antes del Voyager, fue descubierto en 1948 por el astrónomo estadounidense Gerard Pieter Kuiper.

Neptuno



Es el cuarto planeta en cuanto a tamaño y el octavo en cuanto a distancia al Sol. La distancia media de Neptuno al Sol es de 4.500 millones de kilómetros y su diámetro lineal medio es de aproximadamente 49.400 km, o sea, cerca de 3,8 veces el de la Tierra. Su volumen es aproximadamente 72 veces, su masa 17 veces y su densidad media 0,31 la de la Tierra o 1,7 veces la del agua. El albedo del planeta es alto: refleja el 84% de la luz que recibe. El periodo de rotación es de cerca de 16 horas y el periodo sideral de revolución es de 164,79 años. La magnitud estelar media del planeta es de 7,8 y casi nunca es visible a simple vista, aunque se puede observar con un pequeño telescopio, apareciendo como un pequeño disco azul verdoso sin marcas definidas en su superficie. La temperatura de la superficie de Neptuno es de unos -218 °C, parecida a la de Urano, que está a más de 1.500 km más cerca del sol, por lo tanto, los científicos suponen que Neptuno debe tener alguna fuente interna de calor. La atmósfera se compone fundamentalmente de hidrógeno y helio, pero la presencia de más del 3% de metano da al planeta su soprendente color azul.

Se conocen ocho satélites que giran alrededor de Neptuno, dos de los cuales se pueden observar desde la Tierra. El mayor y más brillante es Tritón, descubierto en 1846, año en el que se observó Neptuno por vez primera. Tritón, con un diámetro de 2.705 km es poco menor que la luna terrestre. Su órbita tiene un movimiento retrógado, esto es, opuesto a su dirección primaria de rotación, a diferencia de cualquier otro satélite importante del Sistema Solar. A pesar de su temperatura extremadamente fría, Tritón tiene una atmósfera de nitrógeno con algo de metano y una cierta neblina. También muestra una activa superficie de géiseres que arrojan una materia subterránea desconocida. Nereo, el segundo satélite, (descubierto en 1949), tiene un diámetro sólo de unos 320 km. La sonda planetaria Voyager 2 descubrió otros seis satélites en 1989. Neptuno también está rodeado por cinco anillos. Su campo magnético está inclinado más de 50° respecto al eje de rotación.
El descubrimiento de Neptuno fue uno de los éxitos de la astronomía matemática. En 1846, para explicar las alteraciones en la órbita de Urano, el astrónomo francés Urbain Le Verrier calculó la existencia y la posición de un planeta nuevo. El mismo año, el astrónomo alemán Johann Gottfried Galle descubrió el planeta a 1° de esa posición. La posición de Neptuno fue calculada, por otra parte, por el matemático británico John Couch Adams, pero los observadores británicos no actuaron con suficiente celeridad para anunciar el descubrimiento del planeta.

Plutón



Noveno y último planeta descubierto hasta ahora en el Sistema Solar. Es el planeta más alejado del Sol que se conoce. Plutón fue descubierto a raíz de una búsqueda telescópica iniciada en 1905 por el astrónomo estadounidense Percival Lowell, quien supuso la existencia de un planeta situado más allá de Neptuno como el causante de ligeras perturbaciones en los movimientos de Urano. Personal del Observatorio Lowell continuó con la búsqueda que finalizó con éxito en 1930, cuando el astrónomo estadounidense Clyde William Tombaugh confirmó que Plutón se encontraba en una posición cercana a la prevista por Lowell. La masa del nuevo planeta, sin embargo, pareció insuficiente para explicar las perturbaciones de Urano y Neptuno, y la búsqueda de un posible décimo planeta continúa.

103984.gif

Plutón da una vuelta alrededor del Sol en 247,7 años a una distancia media de 5.900 millones de kilómetros. Su órbita es tan excéntrica que en ciertos puntos de su recorrido Plutón se encuentra más cerca del Sol que Neptuno. No existe, sin embargo, ninguna posiblidad de colisión, ya que la órbita de Plutón se inclina en más de 17,2° con respecto al plano de la eclíptica y nunca cruza, en realidad, el recorrido de Neptuno.
Plutón solamente puede ser visto a través de grandes telescopios, con los que se ha comprobado que es de color amarillento. Durante muchos años se ha sabido muy poco acerca de este planeta, pero en 1978 los astrónomos descubrieron una luna relativamente grande girando alrededor de Plutón a una distancia aproximada de 19.000 km, y la llamaron Caronte. Las órbitas de Plutón y Caronte han hecho que ópticamente estos cuerpos celestes se superpongan de forma repetida desde 1985 a 1990, lo que ha permitido a los astrónomos determinar sus dimensiones con bastante precisión. Plutón tiene un diámetro de 2.284 km y Caronte de 1.192 km, lo que les convierte en un sistema de dos planetas, más incluso que el de la Tierra y La Luna. Se descubrió también que Plutón tiene una atmósfera tenue, probablemente de metano, que ejerce una presión sobre la superficie del planeta aproximadamente 100.000 veces más débil que la presión atmosférica de la Tierra al nivel del mar. Parece que la atmósfera se condensa y forma capas polares durante el largo invierno de Plutón.

Con una densidad aproximada de dos veces la del agua, Plutón es, aparentemente, más rocoso que los otros planetas de la parte exterior del Sistema Solar. Esto puede ser el resultado del tipo de combinaciones químicas a baja temperatura y baja presión que tuvieron lugar durante la formación del planeta. Algunos astrónomos han sugerido que Plutón puede ser un antiguo satélite de Neptuno, violentamente lanzado a una órbita diferente durante los primeros días del Sistema Solar. Caronte sería entonces una acumulación de los materiales más ligeros resultantes de la colisión.

ASTEROIDE



Los asteroides son esos numerosos “mini” planetas que giran en órbitas elípticas entre las órbitas de Marte y Júpiter.

Tamaños y órbitas


Los asteroides de mayor tamaño y más representativos son: Ceres, con un diámetro de unos 1.030 km, y Palas y Vesta, con diámetros de unos 550 km. Aproximadamente 200 asteroides tienen diámetros de más de 100 km, y existen miles de asteroides más pequeños. La masa total de todos los asteroides del Sistema Solar es mucho menor que la masa de la Luna. Los cuerpos más grandes son más o menos esféricos, pero los que tienen diámetros menores de los 160 km suelen presentar formas alargadas e irregulares. La mayoría de los asteroides, sin tener en cuenta su tamaño, completan un giro sobre su eje cada 5 a 20 horas. Algunos asteroides tienen compañeros.
Actualmente, pocos científicos creen que los asteroides sean los restos de un planeta anterior. Lo más probable es que los asteroides ocupen un lugar en el Sistema Solar donde se podría haber formado un planeta de tamaño considerable, pero no pudo ser por las influencias disruptivas de Júpiter. Quizá en un principio, existieran unas pocas docenas de asteroides que posteriormente se fragmentaron en colisiones mutuas hasta producir el número actual.

Los llamados asteroides Troyanos están situados en dos nubes, una que gira 60° delante de Júpiter, en su órbita, y la otra 60° detrás. En 1977 el asteroide Quirón fue descubierto en una órbita entre la de Saturno y la de Urano. A comienzos de la década de 1990 se descubrió que unos 75 asteroides (los asteroides de Amor) cruzaban la órbita de Marte, unos 50 (los asteroides de Apolo) cruzaban la órbita de la Tierra y menos de 10 (los asteroides de Atón) tienen órbitas más pequeñas que la de la Tierra. Uno de los asteroides interiores más grandes es Eros, un cuerpo alargado que mide 14 × 37 km. Un extraño asteroide de Apolo, Faetón, de unos 5 km de ancho, se acerca al Sol más que cualquier otro asteroide conocido (20,9 millones de km). También se le relaciona con el regreso anual de la corriente de meteoros de Géminis.
Algunos de los asteroides que se acercan a la Tierra son objetivos relativamente fáciles para las misiones espaciales. En 1991, la sonda espacial de la NASA Galileo, en su viaje a Júpiter, captó el primer plano de un asteroide. Las imágenes muestran que el pequeño cuerpo, 951 Gaspra, está salpicado de cráteres y revelan la existencia de un manto de un material fragmentario o regolito que cubre la superficie del asteroide.

Composición de la superficie



Se cree que la mayoría de los meteoritos recuperados en la Tierra se piensa que son fragmentos de asteroides. Las observaciones de asteroides mediante espectroscopia telescópica y por radar apoyan esta hipótesis. Demuestran que los asteroides, al igual que los meteoritos, se pueden clasificar en pocos tipos.
Las tres cuartas partes de los asteroides visibles desde la Tierra, incluido Ceres, pertenecen al tipo C, lo cual parece estar relacionado con una clase de meteoritos conocidos como condritos carbonáceos. Se considera que son los materiales más antiguos del Sistema Solar, con una composición que refleja la de las primitivas nebulosas solares. De color extremadamente oscuro, probablemente causado por su contenido en hidrocarburos, presentan pruebas de haber adsorbido agua de hidratación. Así pues, a diferencia de la Tierra y de la Luna, nunca se han reblandecido o recalentado desde que se formaron por vez primera.
Los asteroides del tipo S, relacionados con los meteoritos pétreos-ferrosos, constituyen aproximadamente el 15% del número total. Mucho más raros son los objetos del tipo M, que se corresponden por su composición a los meteoritos férrosos. Compuestos de una aleación de hierro y níquel, representan los núcleos de los cuerpos planetarios reblandecidos y diferenciados, a los que los impactos despojaron de sus capas externas.

Unos pocos asteroides, entre ellos Vesta, quizá estén relacionados con la clase más extraña de meteoritos: los acondritos. Estos asteroides parecen tener en su superficie una composición ígnea semejante a la de muchos torrentes de lava terrestres y lunares. Por lo tanto, los astrónomos están razonablemente seguros de que Vesta, en algún momento de su historia, se reblandeció de forma parcial. Los científicos se muestran desconcertados ante el hecho de que algunos de los asteroides se hayan reblandecido y otros, como Ceres, no. Una posible explicación es que el primitivo Sistema Solar contuviera ciertos isótopos concentrados, muy radiactivos, que hubieran generado el calor suficiente para reblandecer a los asteroides.

COMETA



Los cometas son cuerpos celestes de aspecto nebuloso que giran alrededor del Sol. Un cometa se caracteriza por una cola larga y luminosa, aunque esto sólo se produce cuando el cometa se encuentra en las cercanías del Sol.

Historia



Las apariciones de grandes cometas se consideraron fenómenos atmosféricos hasta 1577, cuando el astrónomo danés Tycho Brahe demostró que eran cuerpos celestes. En el siglo XVII el científico inglés Isaac Newton demostró que los movimientos de los cometas están sujetos a las mismas leyes que controlan los de los planetas. Comparando los elementos orbitales de algunos de los primeros cometas, el astrónomo británico Edmund Halley mostró que el cometa observado en 1682 era idéntico a los dos que habían aparecido en 1531 y en 1607, y predijo con éxito la reaparición del cometa en 1759. Las primeras apariciones de este cometa, el cometa Halley, se han identificado ahora a partir de registros fechados en el año 240 a.C., y es probable que el brillante cometa observado en el año 466 a.C. fuera también este mismo. El cometa Halley pasó por última vez alrededor del Sol a principios de 1986. En su fase de alejamiento fue visitado en marzo de ese año por dos sondas de construcción soviética, Vega 1 y Vega 2, y por otro vehículo espacial, llamado Giotto, lanzado por la Agencia Espacial Europea. También fue observado a gran distancia por dos astronaves japonesas.

Composición



Un cometa consta de un claro núcleo, de hielo y roca, rodeado de una atmósfera nebulosa llamada cabellera o coma. El astrónomo estadounidense Fred L. Whipple describió en 1949 el núcleo de los cometas, que contiene casi toda la masa del cometa, como una “bola de nieve sucia” compuesta por una mezcla de hielo y polvo.

Hay diversos datos que sustentan la teoría de la bola de nieve. De los gases y partículas meteóricas observados que se expulsan para formar la cabellera y la cola de los cometas, la mayor parte de los gases son moléculas fragmentarias o radicales de los elementos más comunes en el espacio: hidrógeno, carbono, nitrógeno y oxígeno. Los radicales, por ejemplo CH, NH y OH, provienen de la rotura de algunas de las moléculas estables CH4 (metano), NH3 (amoníaco) y H2O (agua), que pueden permanecer en el núcleo como hielos o como compuestos más complejos y muy fríos. Otro hecho que apoya la teoría de la bola de nieve es que se ha comprobado, en los cometas más observados, que sus órbitas se desvían bastante de las previstas por las leyes newtonianas. Esto demuestra que el escape de gases produce una propulsión a chorro que desplaza ligeramente el núcleo de un cometa fuera de su trayectoria, por otra parte, fácil de predecir. Además, los cometas de periodos cortos, observados a lo largo de muchas revoluciones, tienden a desvanecerse con el tiempo como podría esperarse de los del tipo de estructura propuesta por Whipple. Por último, la existencia de grupos de cometas demuestra que los núcleos cometarios son unidades sólidas.
La cabeza de un cometa, incluida su difusa cabellera, puede ser mayor que el planeta Júpiter. Sin embargo, la parte sólida de la mayoría de los cometas tiene un volumen de algunos kilómetros cúbicos solamente. Por ejemplo, el núcleo oscurecido por el polvo del cometa Halley tiene un tamaño aproximado de 15 por 4 kilómetros.

Efectos solares



A medida que un cometa se aproxima al Sol, la alta temperatura solar provoca la sublimación de los hielos, haciendo que el cometa brille enormemente. La cola también se vuelve brillante en las proximidades del Sol y puede extenderse decenas o centenares de millones de kilómetros en el espacio. La cola siempre se extiende en sentido opuesto al Sol, incluso cuando el cometa se aleja del astro central. Las grandes colas de los cometas están compuestas de simples moléculas ionizadas, incluyendo el monóxido de carbono y el dióxido de carbono. Las moléculas son expulsadas del cometa por la acción del viento solar, una corriente de gases calientes arrojada continuamente desde la corona solar (la atmósfera externa del Sol), a una velocidad de 400 km/s. Con frecuencia, los cometas también presentan una cola arqueada, más pequeña, compuesta de polvo fino expulsado de la cabellera por la presión de la radiación solar.

A medida que un cometa se retira del Sol pierde menos gas y polvo, y la cola desaparece. Algunos cometas con órbitas pequeñas tienen colas tan cortas que son casi invisibles. Por otra parte, la cola de al menos un cometa ha superado la longitud de 320 millones de kilómetros en el espacio. La mayor o menor visibilidad de los cometas depende de la longitud de la cola y de su cercanía al Sol y a la Tierra. Menos de la mitad de las colas de los 1.400 cometas registrados eran visibles a simple vista, y menos del 10% resultaron llamativas. Uno de los cometas más brillantes observado desde nuestro planeta en los últimos veinte años ha sido el cometa Hale-Bopp, que alcanzó el punto más próximo a la Tierra en marzo de 1997. Además, el cometa permaneció visible durante un periodo excepcionalmente largo, lo que permitió a los astrónomos realizar importantes investigaciones sobre la composición y el proceso de formación de estos cuerpos celestes.

Periodos y órbitas



Los cometas describen órbitas elípticas, y se han calculado los periodos (el tiempo que tarda un cometa en dar una vuelta alrededor del Sol) de unos 200 cometas. Los periodos varían desde 3,3 años para el cometa Encke a 2.000 años para el cometa Donati de 1858. Las órbitas de la mayor parte de los cometas son tan amplias que pueden parecer parábolas (curvas abiertas que apartarían a los cometas del Sistema Solar), pero como suponen los astrónomos a partir de los análisis técnicos, son elipses de gran excentricidad, posiblemente con periodos de hasta 40.000 años o mayores.
No se conoce ningún cometa que se haya aproximado a la Tierra con una órbita hiperbólica; esto significaría que su origen estaba en el espacio exterior del Sistema Solar. Sin embargo, algunos cometas pueden no volver jamás al Sistema Solar debido a la gran alteración de sus órbitas originales por la acción gravitatoria de los planetas. Esta acción se ha observado en una escala más pequeña: unos 60 cometas de periodos cortos tienen órbitas que han recibido la influencia del planeta Júpiter, y se dice que pertenecen a la familia de Júpiter. Sus periodos varían de 3,3 a 9 años.

Grupo de cometas


Cuando varios cometas con periodos diferentes giran casi en la misma órbita se dice que son miembros de un grupo de cometas. El grupo más conocido incluye el espectacular cometa (que casi rozó el Sol) Ikeya-Seki de 1965, y otros siete que tienen periodos de cerca de mil años. El astrónomo estadounidense Brian G. Marsden dedujo que el cometa de 1965 y el de 1882, incluso más brillante, se separaron de un cometa principal, posiblemente el de 1106. Tal vez este cometa y otros del grupo se separaran de un cometa gigantesco hace miles de años.

Cometas y lluvias de meteoros



Hay también una estrecha relación entre las órbitas de los cometas y las de las lluvias de meteoros. El astrónomo italiano Giovanni Virginio Schiaparelli demostró que la lluvia de meteoros Perseidas, que aparece en agosto, se mueve en la misma órbita que el Cometa III de 1862. De la misma forma la lluvia de meteoros Leónidas, que aparece en noviembre, estaba en la misma órbita que el Cometa I de 1866. Se ha sabido de otras lluvias diferentes relacionadas con las órbitas de los cometas y se supone que son restos diseminados por un cometa a lo largo de su órbita.

Origen de los cometas



En algún momento se creyó que los cometas procedían del espacio interestelar. Aunque no se ha aceptado del todo ninguna teoría detallada de su origen, muchos astrónomos creen que los cometas se originaron en los primeros días del Sistema Solar en su parte exterior, más fría, a partir de la materia planetaria residual. El astrónomo danés Jan Hendrik Oort ha formulado que una “nube de reserva” de material cometario se ha acumulado más allá de la órbita de Plutón, y que los efectos gravitatorios de las estrellas fugaces pueden enviar parte de este material en dirección al Sol, momento en el que se haría visible en forma de cometas.

Colisiones



Las personas supersticiosas han considerado durante mucho tiempo que los cometas presagiaban calamidades o acontecimientos importantes. La aparición de un cometa ha despertado incluso el temor de una colisión entre el cometa y la Tierra. Nuestro planeta, de hecho, ha pasado a través de colas de cometas ocasionales sin que esto haya producido efectos de consideración. La caída del núcleo de un cometa en una gran ciudad probablemente la destruiría, pero la posibilidad de que esto ocurra es muy pequeña. Sin embargo, algunos científicos sugieren que ha habido colisiones en el pasado que incluso pueden haber tenido un efecto climático en la extinción de los dinosaurios.
En 1992 el cometa Shoemaker-Levy 9 explotó en 21 fragmentos de gran tamaño a medida que entraba en el fuerte campo gravitatorio de Júpiter. Durante una semana, en julio de 1994, los fragmentos irrumpieron bruscamente en la densa atmósfera de Júpiter a velocidades de 210.000 km/h. En el impacto, la enorme cantidad de energía cinética de los fragmentos se convirtió en calor mediante explosiones masivas, algunas de ellas visibles como bolas de fuego mayores que la Tierra.

METEORO


Es un fenómeno luminoso que se produce por la entrada en la atmósfera planetaria de un cuerpo sólido, llamado meteoroide, procedente del espacio exterior, y su vaporización por el rozamiento debido a su gran velocidad. De forma aislada se pueden producir meteoros brillantes, conocidos como bolas de fuego, que constan, generalmente, de una cabeza luminosa seguida de una estela de luz, como la de un cometa, que puede perdurar durante varios minutos; algunos, llamados bólidos, explotan con un sonido como el de un trueno. A veces tienen lugar, también de forma aislada y esporádica, meteoros más débiles, llamados estrellas fugaces. En ocasiones, sin embargo, se producen cientos o miles de dichos meteoros durante horas o días, y parece que proceden de un punto fijo. Se denominan lluvias de meteoros y se les da el nombre de la constelación en la que se supone tienen su punto de origen. Algunos aparecen anualmente en los mismos días de cada año y se denominan lluvias periódicas; otros aparecen con poca frecuencia y a intervalos variables. Los periodos de las lluvias de meteoros coinciden generalmente con los de ciertos cometas. La mayor parte de los meteoroides se desvanecen en la atmósfera y caen a la Tierra en forma de polvo; el resto de los meteoroides que alcanzan la superficie de la Tierra u otro planeta se llaman meteoritos.

METEORITO


Un meteorito es todo aquel fragmento de un meteoroide que ha resistido el impacto con la atmósfera y ha alcanzado la superficie de algún planeta antes de consumirse. Los meteoritos encontrados en la Tierra, según su composición, se clasifican en tres tipos: ferrosos, compuestos fundamentalmente de hierro, un pequeño porcentaje de níquel y rastros de otros metales, como el cobalto; pétreos, meteoritos rocosos compuestos de silicatos, y pétreos-ferrosos, que contienen proporciones variables tanto de roca como de hierro. Aunque, actualmente, se cree que la mayor parte de los meteoritos son fragmentos procedentes de los asteroides o cometas, recientes estudios geoquímicos han demostrado que algunas rocas de la Antártida proceden de la Luna y de Marte, desde donde, presumiblemente, fueron lanzadas por el impacto explosivo de asteroides. Los asteroides son, en sí mismos, fragmentos de pequeños planetas formados hace 4.600 millones de años mientras se formaba la Tierra. Se cree que los ferrosos corresponden a los núcleos de los pequeños planetas, mientras que los pétreos (los que no proceden de la Luna y Marte) corresponden a la corteza. Los meteoritos tienen generalmente una superficie irregular y una capa exterior carbonizada, fundida. Los más grandes golpean la Tierra con un tremendo impacto, creando cráteres profundos.
El mayor meteorito conocido pesa aproximadamente 55 toneladas y se encuentra en Hoba West, cerca de Grootfontein, Namibia. El siguiente pesa cerca de 31 toneladas; se trata del Ahnighito (Tienda) y lo descubrió, junto con otros dos meteoritos más pequeños, en 1894, cerca de Cape York, Groenlandia, el explorador estadounidense Robert Edwin Peary. Compuestas fundamentalmente de hierro, estas tres masas han sido utilizadas desde hace mucho tiempo por los inuit para la fabricación de cuchillos y armas. Peary llevó el Ahnighito a Estados Unidos y se exhibe en el Planetario Hayden de Nueva York. El mayor cráter conocido que se cree ha sido producido por un meteorito se descubrió en 1950 al noroeste de Quebec. Tiene un diámetro de 4 km, contiene un lago, y está rodeado de paredes concéntricas de granito fragmentado.

CONCLUSIÓN


Gracias a este trabajo he podido comprender cosas que hasta ahora no me podía ni imaginar. Es posible que todo el Sistema Solar se formara a la vez, conjuntamente con el espacio exterior.
Comparto la fascinación que tenían aquellos sabios científicos de la antigüedad que, sin saberlo, estaban estableciendo las bases que nos irían descubriendo, más tarde, el Sistema Solar tal y como lo conocemos ahora. Creo que faltan muchos detalles por descubrir pero, aunque no por falta de empeño, las cosas no nos salen tan bien como se había planeado. Hablo de ejemplos como el reciente fracaso de la Mars Polar Lander. Pero un hecho como este no debe desilusionarnos, sino muy al contrario, retarnos a seguir consiguiendo datos imprescindibles para comprender.
Pero ¿comprender que? A medida que iba desarrollando mi trabajo, me iba haciendo preguntas que no tienen respuesta por muchas investigaciones que hagamos. Ahí entra el tema espiritual, profundas reflexiones que no puedo evitar hacerme sin entrar en conflictos que se debaten en mi cabeza: ¿es cuestión de física y química o un poder sobrenatural de un todopoderoso? Porque, ¿qué o quién sino mantiene todo este esplendoroso equilibrio?
Y si existimos nosotros en nuestro sistema solar ¿puede en otro lugar darse las condiciones similares que hagan posible la vida, al menos de un modo comprensible para nosotros, por nuestros limitados conocimientos?
Pero centrémonos en la Tierra ya que nuestro planeta tiene demasiados problemas. No es justo que nosotros la estemos estropeando, y al mismo tiempo estemos ensuciando el espacio, por que alrededor de nuestro planeta hay un montón de “basura espacial”, y sería hora de empezar a reflexionar. No estoy de acuerdo ni que la NASA ni la Agencia Espacial Europea empleen sus presupuestos solo en descubrir nuevos retos, aunque sea muy interesante conocer y visitar nuevos planetas. Pero todos los pros, tienen sus contras. Y uno de estos contras es, como he dicho antes la “basura espacial”.

BIBLIOGRAFÍA



Las fuentes de información



- EL PERIÓDICO, Los Grandes Atlas Visuales-El Espacio, ed. Dorling Kindersley, 1991, Madrid
- Diccionario Enciclopédico Salvat, 1983, Barcelona
- Enciclopedia Microsoft® Encarta® 98
- www.rincondelvago.com

Las fotos



- Enciclopedia Microsoft® Encarta® 98
- Internet

Autor:

Edgar Emofly





Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License