Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Capacitores parte 1 - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




Electrónica. Campo eléctrico. Capacitor. Condensadores. Placas paralelas. Circuitos eléctricos. Mediciones electrónicas. En serie. En paralelo



EL CAMPO ELECTRICO



Existe una fuerza de atracción o repulsión entre dos cuerpos cargados. Considerando el campo eléctrico que existe en la zona que rodea a cualquier cuerpo cargado. Ese campo eléctrico se representa por medio de líneas de flujo eléctrico, que se dibujan para indicar la intensidad del campo eléctrico, que se dibujan para indicar la intensidad del campo eléctrico en cualquier punto en torno al cuerpo cargado; o sea, cuanto más densas sean las líneas de flujo, tanto más intenso será el campo eléctrico. En la figura 1.1, el campo eléctrico es más intenso en la posición a que en la b, porque las líneas de flujo son más densas en a que en b. El símbolo para el flujo eléctrico es la letra griega (psi). El flujo por unidad de superficie (densidad de flujo) se representa mediante la letra D y se determina por medio de

8457.gif

Cuanto mayor sea la carga Q en coulombs, tanto mayor será el número de líneas de flujo que salen o llegan por unidad de área, independientemente del medio circundante. El doble de la carga producirá dos veces el flujo por unidad de área; por ende, se pueden igualar las dos cosas como sigue:

8458.gif

Por definición, la intensidad del campo eléctrico en un punto es la fuerza que actúa en ese punto sobre una carga positiva unitaria, o sea,

8459.gif (Newtons/coulombs, N/C)

La fuerza ejercida sobre una carga positiva unitaria (Q2=1) por una carga Q1, situada a una distancia r  metros, se determina mediante la ley de Coulomb:

8460.gif
Sustituyendo esta fuerza F en la ecuación (3), se tiene:

8461.gif

Por ende, podemos llegar a la conclusión de que la intensidad del campo eléctrico en cualquier punto situado a una distancia r de una carga puntual de Q coulombs es directamente proporcional a la magnitud de la carga, e inversamente proporcional a la distancia al cuadrado a que se encuentra la carga. El término al cuadrado en el denominador da como resultado una rápida disminución de la intensidad del campo eléctrico con la distancia del punto de la carga. Al sustituir las distancias R1 y R2 en la ecuación (4), verificaremos nuestra conclusión anterior de que la intensidad del campo eléctrico es mayor en a que en b.

Las líneas de flujo se extienden siempre de un cuerpo con carga positiva a otro con carga negativa, se originan o terminan perpendicularmente a la superficie cargada y nunca se intersecan. Para dos cargas de polaridad similares u opuestas, la distribución de flujos aparecerá como se muestra en la figura (2).

Se puede explicar ya la atracción y la repulsión entre cargas, en términos del campo eléctrico y sus líneas de flujo. En la figura (2a), las líneas de flujo no están entrelazadas, sino que tienden a actuar como amortiguadores, evitando la atracción y provocando  repulsión. Puesto que la intensidad del campo eléctrico es mayor (líneas de flujo más densas) para cada carga, cuanto más nos esforcemos en acercar  las dos cargas, una a la otra, tanto más fuerte será la repulsión entre ellas. En la figura (2b), las líneas de flujo que se extienden de la carga positiva terminan en la carga negativa. Una ley básica de física establece que las líneas de flujo eléctrico tienden a ser siempre tan cortas como sea posible; por ende, las dos cargas se verán atraídas una hacia la otra También en este caso, cuanto más cercanas se encuentren las cargas, tanto mayor será la atracción entre ellas, debido al aumento de las intensidades de los campos.


CONCEPTO Y CARACTERÍSTICAS DE LOS CAPACITORES



Nos movemos lentamente de los temas fundamentales hacia los temas de importancia práctica. Las leyes de la naturaleza y los desarrollos abstractos que hemos manejado hasta ahora nos van a servir para interpretar algunas situaciones que se presentan con ingenios o aparatos de utilidad práctica. De hecho, el invento de estos aparatos es una aplicación de los principios fundamentales para la consecución de un fin práctico. Debe notarse que, conforme nos adentramos en las cuestiones prácticas, nos alejamos de la escala atómica y nos acercamos a la escala humana. Esto no debe sorprendernos: es lógico esperar que los inventos humanos estén en la escala de lo humano… En fin, empezaremos este camino de la aplicación de los conceptos básicos a cuestiones prácticas con el estudio de los capacitores.
Ahora bien, se llama capacitor a un dispositivo que almacena carga eléctrica. El capacitor está formado por dos conductores próximos uno a otro, separados por un aislante, de tal modo que puedan estar cargados con el mismo valor, pero con signos contrarios.
En su forma más sencilla, un capacitor está formado por dos placas metálicas o armaduras paralelas, de la misma superficie y encaradas, separadas por una lámina no conductora o dieléctrico. Al conectar una de las placas a un generador, ésta se carga e induce una carga de signo opuesto en la otra placa. Por su parte, teniendo una de las placas cargada negativamente (Q-) y la otra positivamente (Q+) sus cargas son iguales y la carga neta del sistema es 0, sin embargo, se dice que el capacitor se encuentra cargado con una carga Q.
Los capacitores pueden conducir corriente continua durante sólo un instante (por lo cual podemos decir que los capacitores, para las señales continuas, es como un cortocircuito), aunque funcionan bien como conductores en circuitos de corriente alterna.

Es por esta propiedad lo convierte en dispositivos muy útiles cuando se debe impedir que la corriente continua entre a determinada parte de un circuito eléctrico, pero si queremos que pase la alterna.

Los capacitores se utilizan junto con las bobinas, formando circuitos en resonancia, en las radios y otros equipos electrónicos. Además, en los tendidos eléctricos se utilizan grandes capacitores para producir resonancia eléctrica en el cable y permitir la transmisión de más potencia, así como en :

VENTILADORES
MOTORES DE AIRE ACONDICIONADO
ILUMINACIÓN
REFRIGERACIÓN,
COMPRESORES
BOMBAS DE AGUA
MOTORES DE CORRIENTE ALTERNA

Los capacitores se fabrican en gran variedad de formas y se pueden mandar a hacer de acuerdo a las necesidades de cada uno. Sus características dependen principalmente del tipo de dieléctrico utilizado, de tal forma que los nombres de los diversos tipos se corresponden con los nombres del dieléctrico usado, de esta forma podemos distinguir los siguientes tipos:

PLÁSTICO.
MICA.
ELECTROLÍTICOS.
DE DOBLE CAPA ELÉCTRICA

El papel y el aceite y el vacío se usan como dieléctricos, según la utilidad que se pretenda dar al dispositivo. Pueden estar encapsulados en baquelita con válvula de seguridad, sellados, resistentes a la humedad, polvo, aceite; con terminales para conector hembra y/o soldadura. También existen los capacitores de Marcha o Mantenimiento los cuales están encapsulados en metal. Generalmente, todos los Capacitores son secos, esto quiere decir que son fabricados con cintas de plástico metalizado, autoregenerativos, encapsulados en plástico para mejor aislamiento eléctrico, de alta estabilidad térmica y resistentes a la humedad.
8462.gif

El primer capacitor es la botella de Leyden, el cual es un capacitor simple en el que las dos placas conductoras son finos revestimientos metálicos dentro y fuera del cristal de la botella, que a su vez es el dieléctrico. La magnitud que caracteriza a un capacitor es su capacidad, cantidad de carga eléctrica que puede almacenar a una diferencia de potencial determinado.
La botella de Leyden, uno de los capacitores más simples, almacena una carga eléctrica que puede liberarse, o descargarse, juntando sus terminales, mediante una varilla conductora. La primera botella de Leyden se fabricó alrededor de 1745, y todavía se utiliza en experimentos de laboratorio.
Para un capacitor se define su capacidad como la razón de la carga que posee uno de los conductores a la diferencia de potencial entre ambos, es decir, la capacidad es proporcional al la carga e inversamente proporcional a la diferencia de potencial: C = Q / V, medida en Farad (F).
La diferencia de potencial entre estas placas es igual a: V = E * d ya que depende de la intensidad de campo eléctrico y la distancia que separa las placas. También: V =q / e * d, siendo q carga por unidad de superficie y d la diferencia entre ellas. Para un capacitor de placas paralelas de superficie S por placa, el valor de la carga en cada una de ellas es q * S y la capacidad del dispositivo:
8463.gif

Siendo d la separación entre las placas.
La energía acumulada en un capacitor será igual al trabajo realizado para transportar las cargas de una placa a la otra venciendo la diferencia de potencial existente ellas:
8464.gif

La energía electrostática almacenada en el capacitor será igual a la suma de todos estos trabajos desde el momento en que la carga es igual a cero hasta llegar a un valor dado de la misma, al que llamaremos Q.

8465.gif

Si ponemos la carga en función de la tensión y capacidad, la expresión de la energía almacenada en un capacitor será: W = 1/2 * C * V2 medida en unidades de trabajo.
Dependiendo de superficie o área de las placas su fórmula de capacidad es:
8466.gif

UN CAPACITOR IDEAL



Vamos a suponer que construimos un aparato que consiste de dos placas metálicas paralelas conectadas mediante cables a una fuente electromotriz. La fuente electromotriz será, por el momento, un misterioso aparato cuya función es la de llevar cargas eléctricas desde un punto de potencial bajo hasta un punto de potencial alto. Nótese que, para hacer esto, la fuente electromotriz debe invertir energía, toda vez que su acción se opone a la tendencia natural de las cargas de ir de un punto de alto potencial a un punto de bajo potencial. Más adelante veremos la naturaleza de estas fuentes electromotrices, por ahora baste señalar que una pila es una fuente electromotriz. Así que para fines de la discusión que sigue, pensemos en la fuente electromotriz como una pila.

Nuestro aparato consiste de dos placas metálicas paralelas. Acabaremos por colocar carga eléctrica sobre estas placas. Vamos a suponer que la carga sobre una placa es de la misma magnitud a la de la otra placa pero de signo opuesto: tenemos una situación que hemos estudiado previamente. Sabemos que si las placas fueran infinitas, el campo eléctrico en la región intermedia sería uniforme, y sería cero fuera de esa región. Sin embargo las placas de nuestro aparato no son infinitas, así que ¿cómo es el campo eléctrico en este caso? Hemos visto que resulta conveniente aproximar la situación real por una situación idealizada, y que, en ocasiones, la aproximación es prácticamente indistinguible de la solución exacta, así que ajustaremos las condiciones reales de nuestro aparato para que la aproximación sea buena. Nos interesan las placas infinitas porque el campo que producen es uniforme. Una placa de dimensiones finitas parece infinita si la vemos desde un punto localizado muy cerca de ella. Así que para que el campo eléctrico producido por las placas sea uniforme, como el producido por placas infinitas, debemos limitarnos a regiones muy cercanas a la placa. ¿Qué tan pequeña es esta región? Una manera de medirla es considerar que la distancia entre las placas (que determina la región donde el campo eléctrico es uniforme) sea mucho más pequeña que la propia placa, como se ve en la figura 1.
8467.gif

Figura 1. Un capacitor de placas paralelas. En este ejemplo, las placas son cuadradas y tienen lado a. La separación entre las placas es d. Para que el campo sea aproximadamente uniforme entre las placas a>>d.
Lo que tenemos que hacer para construir nuestro aparato es conseguir placas grandes (por ejemplo, placas cuadradas de lado a) y separarlas una distancia pequeña, d. El campo eléctrico entre las placas será uniforme si a>>d.
Sólo nos falta describir los cables con los que conectamos las placas a la fuente electromotriz. Vamos a suponer que estos cables son conductores ideales, es decir, las cargas viajan a través de ellos sin perder energía. Como no se realiza trabajo, el potencial es el mismo en todos los puntos del alambre.
Lo que acabamos de construir es un circuito eléctrico con un capacitor ideal. En la figura 2 se muestra una representación esquemática del circuito.

8468.gif

Figura 2. Un circuito eléctrico con una fuente electromotriz y un capacitor.

TIPOS DE CAPACITORES



CAPACITORES FIJOS



Estos capacitores tienen una capacidad fija determinada por él fabricante y su valor no se puede modificar. Sus características dependen principalmente del tipo de dieléctrico utilizado, de tal forma que los nombres de los diversos tipos se corresponden con los nombres del dieléctrico.  usado.

De esta forma podemos distinguir los siguientes tipos

- Cerámicos
- Plástico
- Mica
- Electrolíticos
- De doble capa eléctrica

Capacitores cerámicos


El dieléctrico utilizado  por  estos capacitores es la cerámica, siendo el material más usado en el dióxido de titanio.   Este material confiere al condensador grandes inestabilidades por lo que en base al material se pueden diferenciar en 2 grupos:

Grupo I: 


Caracterizados por una alta estabilidad, con un coeficiente de temperatura bien definido y casi constante.

Grupo 2: 


Su coeficiente de temperatura  no ésta prácticamente definido y además de presentar características no lineales, su capacidad varía considerablemente con la temperatura, la tensión y el tiempo de funcionamiento.  Se caracterizan por su elevada permisividad.

Las altas constantes dieléctricas características de las cerámicas permiten amplias posibilidades de diseño mecánico y eléctrico.

Capacitores de plástico



Estos capacitores se caracterizan por las altas resistencias de aislamiento y elevadas temperaturas de funcionamiento y según el proceso de fabricación podemos diferenciar entre los tipos K y tipo MK, que se distinguen por el material de sus armaduras (metal en el primer caso y metal vaporizado en el segundo).

Según el dieléctrico usado se pueden distinguir estos tipos comerciales:

KS: Styroflex, constituidos por láminas de metal y poliestireno como dieléctrico.
KP: formados por láminas de metal y dieléctrico de polipropileno.
MKP: dieléctrico de polipropileno y armaduras de metal vaporizado.
MKY: dieléctrico de polipropileno de gran calidad y laminas de metal  vaporizado.
MKT: láminas de metal vaporizado y dieléctrico de teraftalato de polietileno (poliéster).
MKC: Makrofol, metal vaporizado para las armaduras y policarbonato para el dieléctrico.

A nivel orientativo estas pueden ser las características típicas de los capacitores de plástico:
8469.gif

Capacitores de mica.



El dieléctrico utilizado en este tipo de capacitores es la mica o silicato de aluminio y potasio y se caracterizan por bajas pérdidas, ancho rango de frecuencias y alta estabilidad con la temperatura y el tiempo.

Capacitores electrolíticos


En estos capacitores una de las armaduras es de metal mientras que la otra está constituida por un conductor iónico o electrolito.  Presentan unos altos valores capacitivos en relación al tamaño y en la mayoría de los casos aparecen polarizados.

Podemos distinguir dos tipos:



- Electrolíticos de aluminio : la armadura metálica es de aluminio y el electrolito de tetraborato armónico.
- Electrolítico de tántalo: el dieléctrico está constituido por óxido de tántalo y nos encontramos con mayores valores capacitivos que los anteriores para un mismo tamaño.  Por otra parte las tensiones nominales que soportan son menores que los de aluminio y su costo es algo más elevado.

Capacitores de doble capa eléctrica.



Estos capacitores también se conocen como supercapacitores o CAEV debido a la gran capacidad que tienen por unidad de volumen.  Se diferencian de los capacitores convencionales en que no usan dieléctrico por lo que son muy delgados.  Las características eléctricas más significativas desde el punto de su aplicación como fuente acumulada de energía son: altos valores capacitivos para reducidos tamaños, corriente de fugas muy baja, alta resistencia serie, y pequeños valores de tensión.

CAPACITORES VARIABLES



Estos capacitores presentan una capacidad que podemos variar entre ciertos límites.  Igual que pasa con las resistencias podemos distinguir entre capacitores variables, su aplicación conlleva la variación con cierta frecuencia (por ejemplo sintonizadores); y capacitores ajustables o trimmers, que normalmente son ajustados una sola vez (aplicaciones de reparación y puesta a punto).

La variación de la capacidad se lleva a cabo mediante el desplazamiento mecánico entre las placas enfrentadas.  La relación con que varían su capacidad respecto al ángulo de rotación viene determinada por la forma constructiva de las placas enfrentadas, obedeciendo a distintas leyes de variación, entre las que destacan la lineal, logarítmica y cuadrática corregida.


IDENTIFICACIÓN DE VARIABLES


Vamos a disponer de un código de colores, cuya lectura varía según el tipo de condensador, y un código de marcas, particularizado en los mismos.  Primero determinaremos el tipo de condensador (fijo o variable) y el tipo concreto dentro de estos.

Las principales características que nos vamos a encontrar en los capacitores van a ser la capacidad nominal, tolerancia, tensión y coeficiente de temperatura, aunque dependiendo de cada tipo de traerán unas características u otras.

En cuanto a las letras para la tolerancia y la correspondencia número - color del código de colores, son lo mismo que para resistencias.  Debemos destacar que la fuente más fiable a la hora de la identificación son las características que nos proporciona el fabricante.

Estos capacitores siempre indican la capacidad en microfaradio y la máxima tensión de trabajo en voltios.  Dependiendo del fabricante también puede venir indicados otros parámetros como la temperatura y la máxima frecuencia a la que pueden trabajar.  Tenemos que poner especial atención en la identificación de la polaridad.  Las formas más usuales de indicación por parte de los fabricantes son las siguientes:

Capacitores de tantalio



Actualmente estos capacitores no usan el código de colores (los más antiguos, sí); con el código de marcas la capacidad se indica en microfaradios y la máxima tensión de trabajo en voltios.  La terminal positiva se indica con el signo +.

Actualmente estos capacitores no usan el código de colores (los más antiguos, sí); con el código de marcas la capacidad se indica en microfaradios y la máxima tensión de trabajo en voltios.  La terminal positiva se indica con el signo +.

CAPACITANCIA



Este efecto de capacitancia de por ejemplo si dos placas paralelas de un material conductor, separadas por un hueco de aire, se han conectado a una batería mediante un interruptor t un resistor. Si las placas  paralelas están inicialmente descargadas y se deja el interruptor abierto, no existirá ninguna carga positiva ni negativa neta en ninguna de las placas; sin embargo , en el momento en que se cierre el interruptor , se  atraeran electrones a través del conductor superior y por el resistor a la terminal positiva  de la bateria. Esta acción crea una carga positiva neta en la placa superior. La terminal negativa repele electrones por el conductor inferior a la placa inferior y al mismo tiempo, la placa superior atrae esos electrones. Esta transferencia de electrones  continua hasta que la diferencia  de potencial a través de las placas paralelas es exactamente igual a la fuerza electromotriz de la batería. El resultado final es una carga positiva  neta en la placa superior y una carga negativa en la inferior.

El capacitor, construido simplemente con dos placas conductoras paralelas separadas por un material aislante, tiene una medida que la:  capacitancia. Es una medida  de la eficiencia de un  capacitor para almacenar carga en sus placas. Un capacitor tiene una capacidad de un farad si se deposita en las placas una carga de un coulomb  mediante una difencia de potencial de un volt  entre las placas. Si se expresa en forma de ecuación, la capacitancia se determinara por medio de :

8470.gif

Si se aplica una diferencia de potencial de V volts a las dos placas, separadas por un a distancia (d), la intensidad del campo eléctrico entre las placas  se determinaran por medio de:

8471.gif

La capa de la carga positiva en una superficie y la carga negativa de la otra no se neutralizan, da como resultado el establecimiento de un campo eléctrico en el interior del aislador. El campo eléctrico  neto entre las placas se reducira debido a la inserción del campo eléctrico. La función del dieléctrico es crear un campo eléctrico que se oponga al establecimiento por cargas libres en las placas paralelas. Por esta razón el material aislante se le denomina  dieléctrico.

La razón  de la densidad de flujo a la intensidad del campo eléctrico  en el dieléctrico se denomina permitividad del dieléctrico:

8473.gif
Tabla de permitividad relativa de varios dieléctricos

8474.gif

El área de las es otro factor a considerar, puesto que las placas grandes presentan mayor área para la distribución de los electrones que las placas pequeñas, el  aumento de estas aumentara la carga a igualdad de tensión y por consiguiente aumentara la capacidad. En forma de ecuación que daría de la siguiente manera:

8475.gif

8476.gif





Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License