Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Acero Materiales metálicos parte 1 - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




INTRODUCCIÓN


A traves de la historia el hombre a tratado de mejorar las materias primas, añadiendo materiales tanto orgánicos como inorgánicos, para obtener los resultados ideales para las diversas construcciones.

Dado el caso de que los materiales mas usados en la construcción no se encuentran en la naturaleza en estado puro, por lo que para su empleo hay que someterlos a una serie de operaciones metalúrgicas cuyo fin es separar el metal de las impurezas u otros minerales que lo acompañen. Pero esto no basta para alcanzar las condiciones optimas, entonces para que los metales tengan buenos resultados, se someten a ciertos tratamientos con el fin de hacer una aleación que reúna una serie de propiedades que los hagan aptos para adoptar sus formas futuras y ser capaces de soportar los esfuerzos a los que van a estar sometidos.

El acero como material indispensable de refuerzo en las construcciones, es una aleación de hierro y carbono, en proporciones variables, y pueden llegar hasta el 2% de carbono, con el fin de mejorar algunas de sus propiedades, puede contener también otros elementos. Una de sus características es admitir el temple, con lo que aumenta su dureza y su flexibilidad.

En las décadas recientes, los ingenieros y arquitectos han estado pidiendo continuamente aceros cada vez mas resientes, con propiedades de resistencia a la corrección; aceros mas soldables y otros requisitos. La investigación llevada a cabo por la industria del acero durante este periodo ha conducido a la obtención de varios grupos de nuevos aceros que satisfacen muchos de los requisitos y existe ahora una amplia variedad cubierta gracias a las normas y especificaciones actuales.

El acero es una aleación de hierro con carbono en una proporción que oscila entre 0,03 y 2%. Se suele componer de otros elementos, ya inmersos en el material del que se obtienen. Pero se le pueden añadir otros materiales para mejorar su dureza, maleabilidad u otras propiedades.

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución. Antes del tratamiento térmico, la mayoría de los aceros son una mezcla de tres sustancias, ferrita, perlita, cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita es un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una mezcla de ferrita y cementita, con una composición específica y una estructura características, sus propiedades físicas con intermedias entre las de sus dos componentes. La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.

1. HISTORIA



Antes de 3000 A.C.
Se descubre el fuego.
Aparece la minería, la metalurgia.
Se descubren los siguientes elementos: cobre, carbono, oro, hierro meteórico, plomo, mercurio, plata, azufre, estaño, zinc
El oro es extraído de los depósitos aluviales
El cobre, estaño, plomo y zinc son reducidos de sus menas por fundición.
Bronce
Vaciado de metales en moldes y forjado.
3,000 - 600 A.C.:
El oro se recupera por concentración gravimétrica
Fundición por el método de la cera perdida (Egipto 2,500 años A.C.)
Se produce hierro forjado (2500 años A.C.).
Se obtiene el acero por forja.

La fecha mas exacta en la humanidad descubrió la técnica de fundir material férrico para producir metal utilizable no es conocida. Los instrumentos férricos mas antiguos conocidos descubiertos por arqueólogos en Egipto en el año 3000AC y aun antes se usaron ornamentos férricos; se buscaba el endurecimiento de armas férricas por medio de variaciones de calor la cual era una técnica avanzada en el año 1000AC y fue dada a conocer por los Griegos.

Las primeras aleaciones férricas fueron producidas por obreros aproximadamente hasta el siglo 14 DC, y este seria clasificado hoy como hierro forjado. Estas aleaciones fueron hechas calentando una masa de material férrico y carbón de leña en un horno que tenia una cubierta rígida, bajo este tratamiento el material se redujo a la esponja de hierro metálico en forma de escoria, compuesta por impurezas metálicas y cenizas del carbón de leña. Esta esponja de hierro se alejada del horno incandescente, mientras la escoria se
manejaba con trineos pesados, para así poder soldar y consolidar el hierro. El hierro producido en estas condiciones contenía 3% de partículas de escoria, y 0.1% de otras impurezas. De ves en cuando esta técnica de fabricación del hierro produjo, por accidente, un verdadero acero en lugar de hierro forjado. Los herreros aprendieron a hacer acero calentando hierro forjado y carbón de leña en arcilla embala para un periodo de varios días. Por este proceso el hierro absorbió bastante carbono para volverse un verdadero acero, el cual ténica mejores características que el hierro inicialmente.

Después del siglo 14 se mejoraron los hornos de fundimiento, aumentando el tamaño y el proyecto fue usado para forzar la combustión gasea a través de la carga en la cual se hacia la mezcla de materiales crudos. En estos hornos mas grandes, el material férrico en la parte superior del horno se redujo primero a hierro metálico y entonces adquirió mas carbono como resultado de los gases forzados a través de él por la combustión. El producto de estos hornos era un lingote de hierro, una aleación que se funde a una temperatura mas baja que el acero o el hierro forjado, luego este se refinaba para hacer acero.

En la fabricación moderna del acero se emplean hornos con combustión moderada que son una vil copia actualizada de los viejos hornos utilizados por los antiguos herreros. El proceso de refinamiento del hierro fundido con incorporadores de aire fue patentado por el Británico Henry Bessemer que desarrollo el horno Bessemer o Comversor en 1855. Desde los años sesenta se ha implementado el uso de hornos eléctricos, con pequeños molinos, que proporcionan el metal en pequeños trozos, estos molinos son un componente importante en la producción del acero americano.

“Para una mayor ampliación de esta, por favor observar el proceso de producción y obtención del acero, correspondiente al numeral 4.1″

2. PROPIEDADES DE LOS MATERIALES METÁLICOS



Las propiedades principales que un metal debe cumplir para ser utilizado indispensablemente en una construcción debe cumplir con las siguientes propiedades.

FUSIBILIDAD:

Es la facilidad de poder dar forma a los metales, fundiéndolos y colocándolos en moldes.

FORJABILIDAD:

Es la capacidad para poder soportar las variaciones de formas, en estado sólido o caliente, por la acción de martillos, laminadores o prensas.

MALEABILIDAD:

Propiedad para permitir modificar su forma a temperatura ambiente en laminas, mediante la acción de martillado y estirado.

DUCTILIDAD:

Es la capacidad de poderse alargar en longitudinalmente.

TENACIDAD:

Resistencia a la ruptura al estar sometido a tensión.

FACILIDAD DE CORTE:

Capacidad de poder separarse en trozos regulares con herramientas cortantes.

SOLDABILIDAD:

Propiedad de poder unirse hasta formar un cuerpo único.

OXIDABILIDAD:

Al estar en presencia de oxigeno, se oxidan formando una capa de oxido.

3. HIERRO



El hierro era conocido y utilizado para los propósitos ornamentable y para armas en edades prehistóricas; el espécimen mas temprano todavía existente es un grupo de cuentas férricas oxidadas encontradas en Egipto, en el año 4000AC. El termino arqueológico, edad férrica, solo aplicaba propiamente al periodo cuando se uso el hierro extensivamente para los propósitos utilitarios, como para herramientas, así como para la ornamentación.

Es un metal blando, dúctil y maleable cuyo peso especifico es de 7.86 y su punto de fusión es de 1500°C; antes de fundirse se reblandece y se puede trabajar. Todos los productos obtenidos con el hierro y sus aleaciones se denominan productos siderúrgicos. Para la obtención del hierro son necesarios minerales ferrosos y otras materias como fundentes y carbón. Los minerales de hierro mas importantes son: magnetita, oligisto, limonita y siderita.

Es el elemento esencial para la producción del acero, el cual esta compuesto en un 78% como mínimo de Fe, el hierro posee una gran cantidad de propiedades favorables para la construcción, y por ello después del concreto, es llamado como el esqueleto de las estructuras.

3.1 OBTENCIÓN:



Puede obtenerse hierro en estado sólido por el procedimiento de forjas cartalanas, que solo es aplicable en minerales muy ricos; se obtiene hierro dulce y también acera.

En la actualidad la obtención del hierro se efectúa en altos hornos cuyo perfil característico es el de los troncos de cono unidos por sus bases mayores la parte superior se denomina cuba y la parte inferior, atalaje, el producto obtenido es el arrabio o fundición, escorias y gases. Esta materia no es
utilizable, y es necesaria una nueva fusión para obtener el hierro dulce y la fundición propiamente dicha. Para la obtención del acero se emplean varios sistemas: becemer, siemens y tomas que tienden a volverlo a fundir, eliminando parte del carbono y añadiendo otras sustancias.

3.2 PROCESO DE PRODUCCIÓN



Este se produce generalmente en lingotes, los materiales básicos usados en la fabricación de este son el coque y el agua, el coque se quema como un combustible para calentar el horno a altas temperaturas, para generar la fundición del material férrico para darle fluidez y pureza, apto para el moldeo, para formar un fluido, el cual se introduce en los diferentes moldes con el fin de darle la forma de lingote, la cual es la forma mas conveniente para almacenar y transportar, pero estos sufren un cambio brusco de temperatura al añadirle agua, para darle cierto temple.

A principio de los años 90, la producción de Estados Unidos anual de materia férrica excedió en 56 millones de toneladas métricas. En el mismo periodo la producción mundial era casi de 920 millones de toneladas métricas. El valor estimado de materia utilizable producido en 1990 en los Estados Unidos estaba mas de $1.7mil millones.

3.3 PROPIEDADES



El hierro puro tiene una dureza que va de 4 a 5, es suave maleable y dúctil. Este es magnetizado fácilmente a temperaturas ordinarias; es difícil magnetizar a altas temperaturas (excedan 790°C), sometido a estas este pierde su propiedad magnética.

El metal existe en tres formas diferentes: ordinaria o alfha-hierro; gama-hierro; delta-hierro. Las propiedades físicas diferentes de todas las formas alotrópicas y la diferencia en la cantidad de carbono subida por cada una de las formas tocan en una parte importante en la formación, endurecido, y templado de acero.
Químicamente, el hierro es un metal activo. Combina los halógenos ( fluor, cloro, bromo…), azufre, fósforo, carbono, y sicona. Este reacciona con algunos ácidos perdiendo sus características, o en algunos casos llega a la corrección masiva. Generalmente al estar en presencia de aire húmedo, se corroe, formando una capa de oxido rojiza-castaño ( oxido férrico escamoso), la cual disminuye su resistencia y además estéticamente es desagradable.

3.4 USOS



El hierro puro preparado por la electrolisis de solución del sulfato férreo, ha limitado su uso. El hierro comercial invariablemente contiene cantidades pequeñas de carbono y otras impurezas que alteran sus propiedades físicas, que son mejoradas considerablemente por la suma extensa de carbono y otros elementos ligando. La gran mayoría del hierro se utiliza en formas procesadas, como hierro forjado, hierro del lanzamiento, y acero. El hierro puro comercialmente se usa para la producción de metal en plancha, galvanizado, y de electroimanes, los elementos de hierro son empleados para los propósitos medicinales en el tratamiento de anemia, cuando la cantidad de hemoglobina o el numero de los corpúsculos de sangres rojas en la sangre se baja. El hierro también se usa en tónicas. Pero Principalmente se usa en la fabricación del acero.

4. ACERO



Son aquellos productos ferrosos cuyo tanto porciento de carbono esta comprendido entre 0.05% y 1.7%; el acero endurece por el temple y una vez templado, tiene la propiedad de que si se calienta de nuevo y se enfría lentamente, disminuye su dureza. El acero funde entre los 1400 y 1500°C, y se puede moldear con mas facilidad que el hierro.

Aceros se pueden clasificar según se obtengan en estado sólido: ensoldados, batidos o forjados; o, en estado liquido, en hieroos o aceros de fusión y homogéneos. También se clasifican según su composición química, en aceros originarios, al carbono y especiales.

La proporción de carbono influye sobre las características del metal. Se distinguen dos grandes familias de acero: los aceros aleados y los no aleados. Existe una aleación cuando los elementos químicos distintos al carbono se adicionan al hierro según una dosificación mínima variable para cada uno de ellos.

Por ejemplo el 0.5% para el silicio, el 0.08% para el molibdeno, el 10.5% para el cromo. De esta manera una aleación del 17% de cromo mas 8% níquel constituye un acero inoxidable. Y por eso no hay un acero sino múltiples aceros.

4.1 PROCESO DE PRODUCCIÓN Y OBTENCIÓN


El acero se fabrica partiendo de la fundición o hierro colado; éste es muy impuro, pues contiene excesiva cantidad de carbono, silicio, fósforo y azufre, elementos que perjudican considerablemente la resistencia del acero y reducen el campo de sus aplicaciones.

La fabricación verdadera del acero se inició hacia 1856, cuando se introdujo en la siderurgia el empleo del convertidor Bessemer, consistente en un recipiente de gran capacidad y de forma de pera, de paredes de hierro y fondo provisto de numerosos orificios, a través de los cuales se hacía llegar una potente corriente de aire, que removía con violencia la masa de hierro colado fundido que llenaba el convertidor.

La reacción entre el oxígeno del aire y los componentes de la fundición era violentísima y tal el calor desarrollado dentro del convertidor que la masa de la fundición se mantenía líquida por sí misma. En la reacción indicada se combinaba la mayor parte del carbono, fósforo y azufre con el oxígeno del aire insuflado, pero no se eliminaba el silicio, lo que constituía un grave inconveniente, razón por la cual no podían utilizarse los minerales de hierro ricos en aquél.

Por otra parte, el primitivo convertidor Bessemer sólo podía utilizarse un reducido número de veces, pues la fundición líquida y a elevada temperatura atacaba las paredes de hierro del aparato, Estos inconvenientes fueron subsanados por el oficinista británico Thomas, quien logró afinar el hierro colado revistiendo las paredes internas del convertidor Bessemer con una mezcla de greda y dolomita pulverizada (carbonato de calcio y magnesio), y al mismo tiempo agregaba a la fundición un poco de cal viva, insuflando aire comprimido caliente por el fondo del aparato. El silicio y gran parte del manganeso contenidos en la fundición se queman con rapidez y el óxido de manganeso que se forma se combina con el silicio; el silicato manganoso funde con dificultad y flota sobre la masa incandescente líquida en forma de escoria, el carbonato arde a su vez y el fósforo se combina con la cal del revestimiento del convertidor y se forma fosfato cálcico básico, el cual flota también en forma de escoria (escories Thomas) sobre la masa líquida, y de la cual se separa con las escorias restantes. Posteriormente mejoraron el procedimiento de afinación del acero Martín, francés, y Siemens, alemán; que introdujeron en la siderurgia los hornos de sus respectivos nombres. En estos hornos, calentaba la fundición o hierro fundido en una atmósfera de gases de gasógeno y se le mezclan chatarra de acero viejo o de hierro dulce. Al alemán Krupp se le debe el método Industrial de obtención de aceros al crisol, que consiste en refundir el acero Martín-Siemens dentro de grandes crisoles fabricados con una mezcla de arcilla, grafito, coque y carbón vegetal en polvo, donde el acero se aflna y purifica más aún. Así se obtiene el acero fundido, empleado en la fabricación de herramientas de corte.

Más modernos aún son los aceros eléctricos, obtenidos en hornos eléctricos, en éstos se afina el acero obtenido en los hornos Martín-SiemenS, y se le recarbura con carbono puro o aglomerados de limaduras de hierro y carbón vegetal. Las propiedades del acero se modifican con relativa facilidad, calentándolo a temperatura próxima a 1.000 °C y sumergiéndolo con rapidez en agua, aceite o mercurio fríos (temple) se aumenta su elasticidad; si, por el contrario, se le calienta a elevada temperatura y se le deja enfriar lentamente (recocido) se obtiene acero menos elástico pero más tenaz y resistente al choque. El acero es una aleación de hierro y carbono, esto, es, un carburo de hierro, por eso no existe de él un tipo único; sus propiedades (tenacidad, elasticidad, etc.) varían según el contenido de carbono y la clase empleada en su fabricación (martensita, perlita, ferrita o hierro puro; también influye en él, el método seguido en su fabricación. Existen aceros duros, rápidos (resistentes a la lima), etc, el acero es de gran importancia a causa de las múltiples aplicaciones que recibe. Se pueden modificar sus propiedades aleándolo con otros metales; de este modo se obtienen los aceros especiales.

El acero líquido se elabora a partir del mineral (procedimiento de fundición) o de chatarras (procedimiento eléctrico).
A continuación, el acero líquido se solidifica por moldeo en una máquina de colada continua.

A la salida, se obtienen los SEMI-PRODUCTOS: barras de sección rectangular (desbastes) o cuadrada (tochos o palanquillas), que son las piezas en bruto de las formas finales.
Por último, las piezas en bruto se transforman en PRODUCTOS TERMINADOS mediante el laminado, y algunos de ellos se someten a tratamiento térmico. Más de la mitad de las planchas laminadas en caliente son relaminadas en frío y eventualmente reciben un revestimiento de protección anticorrosión.

esquema

FÁBRICA DE AGLOMERACIÓN:


Para preparar el mineral de hierro: Éste se tritura y calibra en granos que se aglomeran (se aglutinan) entre ellos. El aglomerado así obtenido se compacta, cargándolo después en el alto horno junto con el coque. El coque es un potente combustible, que se obtiene como residuo sólido de la destilación de la hulla (una clase de carbón muy rico en carbono).

ALTO HORNO:


Se extrae el hierro de su mineral. El mineral y el coque sólidos se introducen por la parte superior del horno. El aire caliente (1200°C) inyectado en la base produce la combustión del coque (carbono casi puro). El óxido de carbono así formado reduce los óxidos de hierro, es decir, extrae su oxígeno, aislando el hierro de ese modo. El calor desprendido por la combustión funde el hierro y la ganga en una masa líquida en que la ganga, de menor densidad, flota sobre una mezcla a base de hierro, denominada “fundición”. Los residuos formados por la ganga fundida (escorias) son aprovechados por otras industrias: construcción de carreteras, fabricación de cementos…

CONVERTIDOR DE OXÍGENO:


Aquí se convierte la fundición en acero. La fundición en fusión se vierte sobre un lecho de chatarra. Se queman los elementos indeseables (carbono y residuos) contenidos en la fundición, inyectando oxígeno puro. Se recuperan los residuos (escoria de acero). Se obtiene acero líquido “bruto”, que se vierte en una cuchara. Se denomina acero bruto porque, en esa etapa, está todavía inacabado.

hombre soldando

COQUERÍA:


El coque es un combustible obtenido mediante dostilación (gasificación de los componentes no deseados) de la hulla en el horno de la fábrica de coque. El coque es carbono casi en estado puro, dotada de una estructura porosa y resistente a la rotura. Al arder en el alto horno, el coque aporta el calor necesario para le fusión des mineral y los gases necesarios para su reducción.

PROCEDIMIENTO ELÉCTRICO:


La materia prima introducida en el horno puede incluir desde material en bruto (por ejemplo, piezas de maquinaria) debidamente seleccionado, hasta chatarra entregada en forma preparada, clasificada, triturada y calibrada con un contenido mínimo de hierro del 92%. La chatarra se funden en un horno eléctrico.

El ACERO LIQUIDO:


obtenido de esa manera, se somete a continuación a las mismas operaciones de afinado y de matización que en el procedimiento de fundición. La chatarra procede de envases desechados, edificaciones, maquinaria y vehículos desguazados o desechos de fundición o acero recuperados en la planta siderúrgica o de sus clientes transformadores. Cada matiz de acero requiere una elección rigurosa de la materia prima, especialmente en función de las “impurezas” que un metal determinado u otro mineral contenido en la chatarra pueda representar para un matiz.

ESTACIÓN DE AFINO:


Afino (descarburación) y adiciones químicas Las operaciones se producen en un recipiente al vacío, haciendo que gire el acero entre la cuchara y el recipiente con la ayuda de un gas inerte (argón). Se inyecta oxígeno a fin de activar la descarburación y calentar el metal. Este procedimiento permite una gran precisión en el ajuste de la composición química del acero (”matización”).

COLADA CONTINUA MOLDEO DE PIEZAS EN BRUTO (semiprocesados):


Aquí: moldeo de un desbaste. El acero fundido se vierte en continuo en un molde sin fondo. Al atravesar este molde, comienza a solidificarse en contacto con las paredes refrigeradas por agua. El metal moldeado baja, guiado por un conjunto de rodillos, y continúa enfriándose. Al llegar a la salida, está solidificado hasta el núcleo. En ese momento se corta inmediatamente en las longitudes deseadas.

4.2 MÉTODOS DE REFINAMIENTO



Los materiales básicos para la fabricación de lingotes de acero es material férrico coque y caliza. El coque se quema como un combustible para calentar el horno; cuando se quema el coque, este emite monóxido de carbono que se combina con los óxidos férricos, reduciéndolos a hierro metálico, esta es la reacción química básica en el horno de la explosión; tiene la ecuación: Fe2O3+3CO = 3CO2+2Fe. La caliza en el cargo del horno se usa como una fuente adicional de monóxido de carbono y como un flujo para combinar con el sílice infusible, para formar el silicato de calcio fusible. Sin la caliza, se formarían silicatos férricos, con una perdida resultante de hierro metálico. Los silicatos del calcio mas otras impurezas forman una escoria que flota en sima del metal fundido al fondo del horno.

Los lingotes de hierro ordinario son producidos por hornos de la explosión que contiene hierro aproximadamente en un 92%, carbono 3% o 4%, silicón 0.5% a 3%, manganeso 0.25% a 2.5%, fósforo 0.04% a 2%, y un rastro de azufre. Un horno de la explosión típico consiste en una cáscara de acero cilíndrica lineada con un terco que es cualquier sustancia no metálica como ladrillo refractario. La cáscara se adelgaza a la cima y el fondo es mas ancho a un cuarto de la distancia del fondo. La porción mas baja del horno se llamo antalage de alto horno, el cual esta provisto por varias aperturas tubulares o tulleres, donde la explosión aérea es forzada. Un agujero en la parte inferior del fondo del horno, es el encargado de evacuar las escorias, o impurezas que van a afectar las características del acero.

La cima del horno esta a aproximadamente a 27 metros, contiene aberturas para el escape de los gases y un par de depósitos redondos de alimentación, estos se controlan a través de válvulas campanudas, con las que se adecua la introducción de la carga al horno.

Un desarrollo importante en tecnología de horno de explosión, es el uso de hornos presurizados los cuales se introducieron después de la segunda guerra mundial. Estos consisten en acumulación de gases, y luego su pronta liberación, pero además de eso esta técnica hace posible la mejor combustión del coque y rendimiento mas alto del lingote de acero, además de ello el rendimiento aumenta en un 25%. También es indispensable para acelerar el proceso implementar al conjunto aire y oxigeno.

Cualquier escoria que pueda fluir del horno con el metal, se desnata fuera del horno, antes de que el fluido se introduzca en el recipiente.

En resumen el refinamiento consististe, el evacuar del acero a producir, todas la impurezas que puedan afectar a este. Se comienza con la evacuación de vapores o gases dañinos, y luego con las escorias, para así tener un acero de la calidad que uno desea.

4.3 ALEACIONES



Debido a que las aleaciones han venido ganando un gran campo de acción en la Ingeniería, podíamos conocer las propiedades que caracterizan a cada tipo de aleación. La resistencia no es la única característica que nos permite decidir si el elemento tendrá un desempeño optimo. Un desempeño satisfactorio depende también de la densidad, la resistencia a la corrosión y los efectos de la temperatura, así como también de las propiedades eléctricas y magnéticas. Como ejemplo consideremos algunas partes para las cuales son especialmente apropiadas ciertas aleaciones.

Aleaciones de aluminio: partes de aviones (alta resistencia en la relación con su peso)
Aleaciones de magnesio: fundiciones para aviones (compite con el aluminio)
Aleaciones de cobre: alambres eléctricos (alta conductividad)
Aleaciones de níquel: partes para turbinas de gas (alta resistencia a temperaturas elevadas).

Encontramos que más del 95% en peso de los metales de ingeniería, utilizados en los Estados Unidos cada año son aleaciones basadas en aluminio, magnesio, cobre hierro y níquel. De hecho, más del 85% es de la familia basada en el hierro y, a pesar de que los porcentajes para las aleaciones de magnesio y níquel son pequeños, estas tiene gran importancia y sería conveniente conocer algunas de las características principales de algunos tipos de aleaciones.

ALEACIONES MARTENSITICAS.



Contienen de 12 a 20% de cromo con cantidades controladas de carbono y otros aditivos. El tipo 410 es un miembro característico de este grupo. Esas aleaciones se pueden endurecer mediante el tratamiento térmico, con un aumento en la resistencia a la tracción de 550 a 1380 Mpa ( 80000 a 200000 lbf / in2 ). La resistencia a la corrosión es inferior a la de los aceros inoxidables austeniticos y los aceros martensíticos se utilizan en general en ambientes ligeramente corrosivos ( atmosférico, agua dulce y materiales orgánicos).

ALEACIONES INOXIDABLES VACIADAS.



Se utilizan mucho en bombas, válvulas y accesorios. Esas aleaciones vaciadas se designan según el sistema de Alloy Casting lnstitute (ACI). Todas las aleaciones resistentes a la corrosión tienen la letra C más otra letra (A aN) que denota el contenido creciente de níquel. Los números indican el contenido máximo de carbono. Aunque se puede hacer una comparación aproximada entre los tipos ACl y Los AISI, las composiciones no son idénticas y los análisis no se pueden utilizar en forma intercambiable. Las técnicas de fundición requieren un rebalanceo de Las composiciones químicas forjadas. Sin embargo, ¡a resistencia a la corrosión no se ve afectada por esos cambios de composición. Los miembros característicos de este grupo son CF- similar al acero inoxidable tipo 304; CF-8M, similar al tipo 316 CD-4M Cu, que tiene una resistencia mecánica al ácido nítrico, al sulfúrico y al fosfórico.

Además de los grados °C, hay una serie de grados resistentes al calor de aleaciones vaciadas ACl, que se identifican por su similitud con los grados de resistencia a la corrosión, excepto que la primera letra es H en vez de C. Es preciso mencionar también los aceros inoxidables de endurecimiento por precipitación (PH), que se pueden endurecer por medio de tratamientos térmicos a temperaturas moderadas. Muy fuertes y duros a las temperaturas elevadas, estos aceros tienen sólo una resistencia moderada a la corrosión. Un acero PH usual que contiene 17% Cr, 7% Ni 1.1% Al tiene una resistencia elevada, buenas propiedades ante la fatiga y buena resistencia al desgaste. Un número elevado de estos aceros, con composiciones variables, se encuentran disponibles comercialmente. En forma esencial contienen cromo y níquel con agentes agregados de aleación como cobre aluminio. berilio, molibdeno, nitrógeno y fósforo.

ALEACIONES MEDIAS



Un grupo de aleaciones en su mayor parte patentadas, con una resistencia ligeramente mejor a la corrosión que la de los aceros inoxidables se denominan aleaciones medias. Uno de ¡os miembros más populares de este grupo es la aleación 20, producida por ciertas compañías con diversos nombres comerciales. La aleación 20 se desarrollo originalmente para satisfacer la necesidad de un material con una resistencia al ácido sulfúrico superior a la de los aceros inoxidables.

Otros miembros del grupo de aleaciones medias son incoloy 825 y Hastelloy G-3. El lncoloy 825 forjado tiene 40% Ni, 21%Cr, 3% Mo y 2.25% Cu.
El Hastelloy 0-3 contiene 44% Ni, 22% Cr, 6.5% Mo y como máximo 0.05% C.
Estas aleaciones tienen una aplicación muy amplia en los sistemas de ácido sulfúrico. Debido a su alto contenido de níquel y molibdeno tienen mayor tolerancia a la contaminación por el ion cloruro que los aceros inoxidables estándares. El contenido de níquel disminuye el riesgo de fractura debido a la corrosión por esfuerzo. El molibdeno mejora la resistencia a la corrosión por grieta y a las picaduras.


ALEACIONES ALTAS



El grupo de materiales que se denominan aleaciones altas contienen porcentajes relativamente grandes de níquel. El Hastelloy B-2 contiene 61% Ni, y 28% Mo. Existen en la forma forjada y vaciada. El endurecimiento por trabajo presenta ciertas dificultades de fabricación y el maquinado es un poco más difícil que para el acero inoxidable del tipo 316. Se pueden utilizar métodos tradicionales de soldadura. La aleación tiene una resistencia desacostumbrada alta a todas las concentraciones de ácido clorhídrico. Las sales y los ácidos oxidantes corroen con rapidez el Hastelloy B-2; pero los álcalis y las soluciones alcalinas provocan pocos daños en él.

El Coloriste 2 tiene 63% Ni y 32% Mol y se asemeja al Hastelloy B-2. Existe sólo en forma vaciada, principalmente en válvulas y bombas. Se trata de una aleación dura, muy resistente a os choques mecánicos y térmicos. Se puede labrar con herramientas de punta de carburo y soldar con técnicas de arco metálico.

La Hastelloy 0-276 es una aleación basada en níquel que contiene cromo (15.5%), molibdeno (15.5%) y tungsteno (3%) como principales elementos de aleación. Solo se puede conseguir en la forma forjada. Esta aleación es una modificación baja en impurezas del Hastelloy C, que se puede conseguir en forma fundida. El bajo nivel de impurezas reduce substancialmente el riesgo de la corrosión en la precipitación de las superficies límites de los granos en las zonas afectadas por el calor de la soldadura. Esta aleación es resistente a las soluciones de cloruro fuertemente oxidaste, como el cloro húmedo y las soluciones de hipoclorito. Es una de las pocas aleaciones que son totalmente resistentes al agua de mar.

Hastelloy C-4 es una variación reciente, que es casi totalmente inmune a la corrosión ínter granular en las zonas afectadas por el calor de la soldadura.
Chlorimet 3 es una aleación que se consigue sólo en la forma fundida y es similar al Hastelloy C en su contenido de aleación y en resistencia a la corrosión.

lnconel 600 basado en 80% Ni. 16% Cr, 7% Fe, se debe mencionar también como aleación alta. No contiene molibdeno. El grado resistente a la corrosión se recomienda cara ambientes reductores-oxidantes, sobre todo a temperaturas elevadas. Cuando se calienta en el aíre, la aleación resiste la oxidación hasta 1100°C. La aleación es sobresaliente en su resistencia a la corrosión por gases cuando estos últimos están esencialmente libres de azufre.

Las aleaciones que se han citado son los ejemplos característicos de gran número de aleaciones altas patentadas de empleo en la industria química.

ACEROS DE BAJA ALEACIÓN Y ALTA RESISTENCIA.


Existen un gran número de aceros de alta resistencia, y baja aleación cubiertos por las normas ASTM bajo varios números. Además de contener carbono y manganeso, la resistencia de estos aceros se debe a que se usan como elementos de aleación al columbio, vanadio, cromo, silicio, cobre, níquel y otros. Estos aceros tienen límites de fluencia tan bajos como 42,000 psi (2,940 kg/cm2) y tan altos como 65,000 psi (4,550 kg/cm2). Estos aceros tienen mucha mayor resistencia a la corrosión que los aceros simples al carbón. En este grupo se incluyen el A529, A242, A440, A441, A572 y A588.

ACEROS ALEADOS TÉRMICAMENTE TRATADOS PARA LA CONSTRUCCIÓN



Estos aceros contienen elementos de aleación en mayor cantidad que los de baja aleación y alta resistencia y además se tratan térmicamente (por revenido y templado), para obtener aceros tenaces y resistentes. Se enlistan en las normas ASTM con la designación A514 y tienen limites de fluencia de 90,000 a 100,000 psi (6,300 a 7,030 kg/cm2) dependiendo del espesor.

Se dice que existen por ahora más de 200 tipos de acero en el mercado cuyo límite de fluencia está por encima de los 36,000 psi. La industria del acero experimenta con tipos cuyos esfuerzos de fluencia varían de 200,000 a 300,000 psi y esto es sólo el principio. Muchos investigadores de la industria piensan que al final de la década de los 70 se tengan en disponibilidad aceros de 500,000 psi de límite de fluencia. La fuerza teórica que liga o vincula átomos de hierro se ha estimado que está por encima de los 4000,000 psi.2

Aun cuando el precio del acero se incrementa con el aumento de su límite de fluencia, este incremento no es linealmente proporcional y puede resultar económica la utilización de estos aceros, a pesar de su costo, si el uso de ellos se realiza diseñándolos a sus máximos esfuerzos permisibles, a máxima eficiencia, sobre todo en piezas de tensión o tirantes, en vigas con patines impedidos de pandeo, columnas cortas (o de baja relación de esbeltez). Otra aplicación de estos aceros es frecuente en la llamada construcción híbrida, en donde se usan dos o más aceros de diferentes resistencias, los más débiles se colocan en donde los esfuerzos son bajos y los más resistentes en donde los esfuerzos son mayores.

Otros factores que pueden conducir al uso de aceros de alta resistencia, son los siguientes:

1- Superior resistencia a la corrosión.
2- Posible ahorro en costo de flete, montaje y cimentación, por su menor peso.
3- Uso de vigas poco aperaltadas (poca altura) que permiten entrepisos menores.
4- Posible ahorro en materiales de recubrimiento incombustible, ya que pueden utilizarse miembros más pequeños.

El primer pensamiento de la mayoría de los ingenieros al elegir el tipo de acero, es el costo directo de los elementos. Una comparación de costo puede hacerse fácilmente, pero la economía por el grado de acero a usar no se puede obtener a menos que se involucren: el peso, las dimensiones, deflexiones. costos de mantenimiento, fabricación, etc; hacer una comparación general exacta de los aceros es probablemente imposible la menos que se tenga un tipo específico de obra a considerar.





Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License