Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Bombas y sus aplicaciones parte 2 - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




Efecto de la Viscosidad


Las bombas centrífugas también se utilizan para bombear líquidos con viscosidades diferentes a las del agua. Al aumentar la viscosidad, la curva altura caudal se hace mas vertical y que la potencia requerida aumenta. La línea discontinua indica los puntos de máximos rendimiento para cada curva. Se observa que tanto la altura como el caudal disminuyen en el punto de máximo rendimiento.

Dos de las principales pérdidas en una bomba centrífuga son por fricción con el fluido y fricción con el disco. Estas perdidas varían con la viscosidad del líquido de manera que la carga - capacidad de salida, así como de la toma mecánica difiere de los valores que se obtienen cuando se maneja agua.

Es necesario, sin embargo, conocer las tres unidades diferentes que pueden encontrarse para describir la viscosidad de un líquido en especial:
Segundos Saybolt Universal, o SSU
Centistokes - que define la viscosidad cinemática.
Centiposes - que definen la viscosidad absoluta.
Se han hecho muchas pruebas experimentales para determinar el efecto de la viscosidad del líquido en el funcionamiento de diversas bombas centrífugas. Aun con datos muy extensos sobre el efecto de la viscosidad.

Es difícil predecir con precisión el funcionamiento de una bomba cuando maneje un fluido viscoso de su comportamiento cuando emplea agua fría.
Cuando se aplican bombas ordinarias de agua fría para usarse en el bombeo de líquidos viscosos, se debe tener cuidado para asegurarse de que el diseño de la flecha es lo bastante fuerte para la potencia necesaria, que puede ser un considerable esfuerzo en los caballos de fuerza al freno para agua fría, aunque pueda ser el peso específico del líquido menor que el del agua.

SELECCIÓN DE BOMBAS



Al seleccionar bombas para una aplicación dada, tenemos varias bombas entre las que elegir. Haremos lo posible para seleccionar una bomba que opere con un rendimiento relativamente alto para las condiciones de funcionamiento dadas.

Los parámetros que se deben investigar incluyen la velocidad específica Ns, el tamaño D del impulsor y la velocidad de operación n. Otras posibilidades son el uso de bombas multietapa, bombas en serie, bombas en paralelo, etc. Incluso, bajo ciertas condiciones, limitar el flujo en el sistema puede producir ahorros de energía.
El objetivo es seleccionar una bomba y su velocidad de modo que las características de funcionamiento de la bomba en relación al sistema en el cual opera sean tales que el punto de funcionamiento esté cerca del PMR (punto de máximo de rendimiento). Esto tiende a optimizar el rendimiento de la bomba, minimizando el consumo de energía.
El punto de operación puede desplazarse cambiando la curva características de la bomba, cambiando la curva característica del sistema o cambiando ambas curvas. La curva de la bomba puede modificarse cambiando la velocidad de funcionamientos de una bomba dada o seleccionando una bomba distinta con características de funcionamiento diferentes. En algunos casos puede ser una ayuda ajustar el impulsor, es decir, reducir algo su diámetro, alrededor de un 5 por 100, mediante rectificado. Este impulsor mas reducido se instala en la cubierta original. La curva característica del sistema puede cambiarse modificando el tamaño de la tubería o estrangulando el flujo.

Una complicación que se presenta a menudo es que los niveles de ambos extremos del sistema no se mantienen constantes, como ocurre si los niveles de los depósitos fluctúan. En tal caso es difícil alcanzar un rendimiento alto para todos los modos de funcionamiento. En casos extremos a veces se utiliza un motor con velocidad variable.

El procedimiento de selección de una bomba que permita una recirculación segura es selecciones una bomba que produzca el flujo de descarga Qa deseado. La curva E es la característica de carga y capacidad de la bomba y la curva a es la de carga del sistema para la descarga hacia el tanque A. La bomba funciona con una carga de Hop.

Para incluir circulación continua en el sistema de bombeo, hay que aumentar el caudal de la bomba con la carga Hop de funcionamiento para mantener una descarga de Qa hacia el tanque A y, al mismo tiempo, una recirculación Qb de retorno al tanque B. Para lograrlo, se selecciona el tamaño inmediato mayor de impulsor con la curva de rendimiento F.

Si se conoce el flujo Qb con la curva Hop de funcionamiento para orificio y tubo de recirculación, el flujo de recirculación Qs, en el punto de corte de la bomba se puede determinar con:
100482.gif

en donde H, es la carga de corte de la bomba con la curva de rendimiento F.

Calcúlese el flujo mínimo seguro, Qmin, para la bomba con curva de rendimiento F y la ecuación (2) y conviértase Wmin a Qmin.

Compárese la recirculación, Qs, en el punto de corte de la bomba contra el flujo seguro mínimo, Qmin. Si Qs, es mayor que o igual a Qmin, esto concluye el proceso de selección.

Si Q, es menor que Qmin, selecciónese el tamaño inmediato mayor de impulsor y repítase los pasos 3, 4 y 5 hasta

Determinar el tamaño de impulsor que produzca la recirculación mínima segura.


Instalación de Bombas en la Industria de Alimentos



Los productos que manipulan las bombas en la industria de la alimentación pueden ser desde soluciones acuosas y aceites vegetales ligeros a jarabes y melazas e gran viscosidad, desde líquidos puros a los que tienen gran proporción de sólidos. Dada la extensa variedad de características de estos medios. La industria emplea casi todos los tipos de bombas, con ciertas preferencias en aplicaciones concretas, como en el caso de las máquinas específicamente proyectadas como bombas para producto alimenticio con partículas atención con los detalles a estudiar.

La condición principal que deben cumplir estas bombas es que no contaminen el producto en modo alguno. Básicamente esto significa que la bomba no debe ser sensible al ataque corrosivo o abrasivo por parte del producto que se manipula y que no le teñirá en absoluto. Al final de un periodo de utilización, la bomba puede verse obligada a cierto tiempo de inactividad, o incluso pasar a manipular un producto diferente. La facilidad de limpieza y la eliminación eficaz de cualquier residuo de producto son, pues, esenciales y ello debe conseguirse mediante una simple purga; cuando se trata de una bomba de diafragma, el material elegido para este será, normalmente el caucho blanco suave, o bien, si la resistencia ataque químico ha de ser mas elevada, el “hipalón”. Igualmente puede ser necesario que la cabeza de válvula, estas y las conexiones de aspiración de descarga sean de vidrio o de material estéril en lugar de metal.

Basadas en la experiencia se han establecido ciertas condiciones para los materiales. Así, en las bombas centrífugas utilizadas en la manipulación de zumos de melocotones o peras, la caja suele ser de fundición y los rodetes de bronces excepto de cinc, pero esta combinación no conviene par las cerezas aunque su valor de pH sea parecido. En este caso se recurre a la construcción totalmente de bronce. Por otra parte los tomates y las leches sugieren virtualmente el uso de bombas de acero inoxidable.

Si algún material existe con las máxima posibilidades de aplicación en bombas para productos alimenticios es el hacer inoxidable, a pesar de que no deja de tener sus limitaciones sobre todo si el líquido manipulado es electrolito activo, como la salmuera.
Es importante que la bomba se proyecte y se construya de forma que el desmontaje y la limpieza sean operaciones fáciles, dado que quizás deban realizarse a diario o a intervalos regulares (según el proceso) aparte de la facilidad de repararlas y montarlas de nuevo, las superficies internas deben ser lisas y exentas de grietas y puntos de acumulación de suciedad. Esto se tendrá en cuenta al proyectar una bomba para procesos de la industria alimenticia.


CLASIFICACIÓN DE LAS BOMBAS


Las Bombas pueden clasificarse sobre la base de las aplicaciones a que están destinadas, los materiales con que se construyen, los líquidos que mueven y aún su orientación en el espacio. Todas estas clasificaciones, sin embargo, se limitan en amplitud tienden sustancialmente a traslaparse entre sí. Un sistema más básico de clasificación, define primero el principio por el cual se agrega energía al fluido, investiga la identificación del medio por el cual se implementa este principio y finalmente delinea las geometrías específicas comúnmente empleadas. Este sistema se relaciona por lo tanto, con las bombas mismas y no se relaciona con ninguna consideración externa a la bomba o aun con los materiales con que puede estar construida. Bajo este sistema, todas las bombas pueden dividirse en dos grandes categorías:

Dinámicas,

en las cuales se añade energía continuamente, para incrementar las velocidades de los fluidos dentro de la máquina a valores mayores de los que existen en la descarga, de manera que la subsecuente reducción en velocidad dentro, o más allá de la bomba, produce un incremento en la presión. Las bombas dinámicas pueden, a su vez, subdividirse en otras variedades de bombas centrífugas y de otros efectos especiales.

De Desplazamiento,

en las cuales se agrega energía periódicamente mediante la aplicación de fuerza a uno o más límites móviles de un número deseado de volúmenes que contienen un fluido, lo que resulta en un incremento directo en presión hasta el valor requerido para desplazar el fluido a través de válvulas o aberturas en la línea de descarga. Las bombas de desplazamiento se dividen esencialmente en los tipos reciprocantes y rotatorios, dependiendo de la naturaleza del movimiento de los miembros que producen la presión.

Cada una de estas clasificaciones mayores puede, a su vez, subdividirse en varios tipos específicos de importancia comercial, como se indica en la siguiente figura.

100483.gif

BOMBA DE POTENCIA



Una bomba de potencia es una máquina alternativa de velocidad constante, par motor constante y capacidad casi constante, cuyos émbolos o pistones se mueven por medio de un cigüeñal, a través de una fuente motriz externa.

La capacidad de la bomba varía con el número de émbolos o pistones. En general, mientras mayor sea el número, menor es la variación en capacidad, a un número dado de rpm. La bomba se diseña para una velocidad, presión, capacidad y potencia específicas. La bomba puede aplicarse a condiciones de potencia menores que las del punto específico de diseño, pero con sacrificio de la condición más económica de operación.

Las Bombas se construyen en versiones tanto verticales como horizontales. La construcción horizontal se utiliza en bombas de émbolo de hasta 200 HP. Esta construcción es generalmente abajo del nivel de cintura y proporciona facilidad en el ensamble y mantenimiento. Se construyen con tres o cinco émbolos. Las bombas horizontales de pistón llegan hasta los 2.000 HP y normalmente tienen dos o tres pistones, que son de acción simple o doble. La construcción vertical se usa en bombas de émbolo hasta 1.500 HP, con el extremo de fluido sobre el extremo motriz. Esta construcción elimina el peso del émbolo sobre los bujes, empaques y la cruceta y tiene un  dispositivo de alineamiento del émbolo con el empaque. Se requiere un arreglo especial de sellado para evitar que el líquido del extremo del fluido se mezcle con el aceite del extremo motriz. Pueden haber de tres a nueve émbolos.

Los émbolos son aplicables a bombas con presiones desde 1.000 hasta 30.000 [lb/ pulg^2]. La presión máxima desarrollada con un pistón es de alrededor de 1.000 [lb/ pulg^2]. La presión desarrollada por la bomba es proporcional a la potencia disponible en el cigüeñal. Esta presión puede ser mayor que el rango del sistema de descarga o bomba. Cuando la presión desarrollada es mayor que estos rangos se puede originar una falla mecánica. Para evitar esto debe instalarse un dispositivo de alivio de presión entre la brida de descarga de la bomba y la primera válvula en el sistema de descarga.
100484.gif

BOMBA DE VAPOR


Una bomba alternativa de desplazamiento positivo es aquella en la que el émbolo o pistón desplaza un volumen dado de fluido en cada carrera. El principio básico de una bomba alternativa es que un sólido desplazará un volumen igual de líquido. Por ejemplo, un cubo de hielo dejado caer dentro de un vaso completamente lleno de agua, derramará un volumen de agua fuera del vaso, igual al volumen sumergido del cubo de hielo.

Todas las bombas alternativas tienen una parte que maneja el fluido, comúnmente llamada el extremo líquido, el cual tiene:
- Un sólido que desplaza, llamado émbolo o pistón.
- Un recipiente que contiene al líquido, llamado el cilindro líquido.
- Una válvula de succión de retención que admite el fluido de la tubería de succión hacia el cilindro líquido.
- Una válvula de descarga de retención que admite el flujo del cilindro líquido hacia la tubería de descarga.
- Empaque para sellar perfectamente la junta entre el émbolo y el cilindro líquido y evitar que el líquido se fugue del cilindro y el aire entre al cilindro.

Para bombear, es decir para mover el líquido a través del extremo líquido, el émbolo debe moverse. Cuando el émbolo se mueve hacia afuera del cilindro líquido, como se muestra en la figura 2, la presión del fluido dentro del cilindro se reduce. Cuando la presión llega a ser menor que la de la tubería de succión la válvula de succión de retención se abre y el líquido fluye al cilindro para llenar el volumen vaciado al retirar el émbolo. Durante esta fase de la operación, la válvula de descarga de retención se mantiene cerrada debido a la mayor presión en la tubería de descarga. Esta parte la acción de bombeo de una bomba alternativa de desplazamiento positivo se llama la carrera o golpe de succión.

100485.gif

El movimiento hacia atrás debe pararse antes de que el extremo del émbolo llegue al empaque. Entonces el movimiento del émbolo se invierte, iniciándose la parte de la acción de bombeo conocida como la carrera o golpe de descarga, como se ilustra en la figura 3.

100486.gif

El movimiento del pistón dentro del cilindro origina un incremento en la presión del líquido ahí contenido. Esta presión inmediatamente llega a ser mayor que la presión en la tubería de succión originando que la válvula de succión de retención se cierre. Mediante los siguientes movimientos del émbolo, la presión del líquido continúa elevándose. Cuando la presión del líquido en el cilindro alcanza la de la tubería de descarga, la válvula de descarga de retención es forzada a abrirse y el líquido fluye hacia la tubería de descarga. El volumen forzado hacia la tubería de descarga es igual al  desplazamiento del émbolo menos pérdidas muy pequeñas.

BOMBAS CENTRIFUGAS



100487.gif
Las bombas centrífugas prevén su nombre al hecho de que elevar el líquido por la acción de la fuerza centrífuga, que la imprime un rotor, colocado en su interior, el cual es accionado por un motor eléctrico.

Un físico francés fue el primero que ideó las características esenciales de este tipo de bomba, la cual ha ido evolucionando a través de numerosos patentes. Toda una centrífuga, consta de un rotor de pocos a la vez fijos, el cual gira dentro de la caja envolvente, generalmente de forma espiral. El líquido proveniente de la cañería en que la por el centro del rotor, al girar bruscamente a la masa líquida una fuerza centrífuga, que lo hace salida que los canales situados entre los alavés, y la envoltura de la caja donde progresivamente la a energía cinética de la corriente líquida se transforma en energía potencial de presión.

Así como la turbina Francis evolucionó hacia la turbina a hélice, con la necesidad de generar más revoluciones, las bombas centrífugas evolucionaron a las bombas de hélice o de flujo axial, como inconveniencia de ir aumentando el diámetro del eje del rotor, para permitir el ingreso de mayores caudales.

Así cuando se desea obtener mayores caudales se dispone de unos o más rotores sobre el mismo árbol motor.
Las bombas centrífugas, debido a sus características, son las bombas que más se aplican en la industria. Las razones de estas preferencias son las siguientes:

- Son aparatos giratorios.
- No tienen órganos articulados y los mecanismos de acoplamiento son muy sencillos.
- La impulsión eléctrica del motor que la mueve es bastante sencilla.
- Para una operación definida, el gasto es constante y no se requiere dispositivo regulador.
- Se adaptan con facilidad a muchas circunstancias.

Aparte de las ventajas ya enumeradas, se unen las siguientes ventajas económicas:

- El precio de una bomba centrífuga es aproximadamente ¼ del precio de la bomba de émbolo equivalente.
- El espacio requerido es aproximadamente 1/8 del de la bomba de émbolo equivalente.
- El peso es muy pequeño y por lo tanto las cimentaciones también lo son.
- El mantenimiento de una bomba centrífuga sólo se reduce a renovar el aceite de las chumaceras, los empaques del presa-estopa y el número de elementos a cambiar es muy pequeño.

FUNCIONAMIENTO DE LAS BOMBAS CENTRÍFUGAS



Las bombas centrífugas mueven un cierto volumen de líquido entre dos niveles; son pues, máquinas hidráulicas que transforman un trabajo mecánico en otro de tipo hidráulico.

Los elementos constructivos de que constan son:

a) Una tubería de aspiración,

que concluye prácticamente en la brida de aspiración.

b) El impulsor o rodete,

formado por una serie de alabes de diversas formas que giran dentro de una carcasa circular. El rodete va unido solidariamente al eje y es la parte móvil de la bomba. El líquido penetra axialmente por la tubería de aspiración hasta el centro del rodete, que es accionado por un motor, experimentando un cambio de dirección más o menos brusco, pasando a radial, (en las centrífugas), o permaneciendo axial, (en las axiales), adquiriendo una aceleración y absorbiendo un trabajo.

Los alabes del rodete someten a las partículas de líquido a un movimiento de rotación muy rápido, siendo proyectadas hacia el exterior por la fuerza centrífuga, de forma que abandonan el rodete hacia la voluta a gran velocidad, aumentando su presión en el impulsor según la distancia al eje. La elevación del líquido se produce por la reacción entre éste y el rodete sometido al movimiento de rotación; en la voluta se transforma parte de la energía dinámica adquirida en el rodete, en energía de presión, siendo lanzados los filetes líquidos contra las paredes del cuerpo de bomba y evacuados por la tubería de impulsión.

La carcasa, (voluta), está dispuesta en forma de caracol, de tal manera, que la separación entre ella y el rodete es mínima en la parte superior; la separación va aumentando hasta que las partículas líquidas se encuentran frente a la abertura de impulsión; en algunas bombas existe, a la salida del rodete, una directriz de alabes que guía el líquido a la salida del impulsor antes de introducirlo en la voluta.

c)    Una tubería de impulsión.-

La finalidad de la voluta es la de recoger el líquido a gran velocidad, cambiar la dirección de su movimiento y encaminarle hacia la brida de impulsión de la bomba.

La voluta es también un transformador de energía, ya que disminuye la velocidad (transforma parte de la energía dinámica creada en el rodete en energía de presión), aumentando  la presión del líquido a medida que el espacio entre el rodete y la carcasa aumenta.
100488.gif

Fig. I.1.- Bomba centrífuga, disposición, esquema y perspectiva

Este es, en general, el funcionamiento de una bomba centrífuga aunque existen distintos tipos y variantes.

La estructura de las bombas centrífugas es análoga a la de las turbinas hidráulicas, salvo que el proceso energético es inverso; en las turbinas se aprovecha la altura de un salto hidráulico para generar una velocidad de rotación en la rueda, mientras que en las bombas centrífugas la velocidad comunicada por el rodete al líquido se transforma, en parte, en presión, lográndose así su desplazamiento y posterior elevación.

BOMBAS DE DESPLAZAMIENTO POSITIVO Y NO POSITIVO



Bombas de desplazamiento no positivo



Estas bombas son empleadas generalmente para el trasiego de fluidos, la energía cedida al fluido es cinética y funciona generalmente mediante fuerza centrifuga. Una bomba de desplazamiento no positivo, también llamada hidrodinámica no dispone de sistemas de estanqueidad entre los orificios de entrada y salida; por ello produce un caudal que variara en función de la contrapresión que encuentre el fluido a su salida (Bomba centrífuga).

El caudal suministrado por la bomba no tiene suficiente fuerza para vencer la presión que encuentra en la salida y al no existir estanqueidad entre esta y la entrada, el fluido fuga interiormente de un orificio a otro y disminuye el caudal a medida que aumenta la presión, según la gráfica que se muestra en la figura.
100489.gif

Fig. 2. Rendimiento de una bomba centrifuga

En este tipo de bombas la presión máxima alcanzable variara en función de la velocidad de rotación del elemento impulsor.

Dentro de este grupo de bombas de desplazamiento no positivo se incluyen las bombas peristáticas, que son un intermedio entre estas y las de desplazamiento positivo y principalmente se utilizan para bajas presiones.


Bombas de desplazamiento positivo



Características Principales



Las bombas hidrostáticas de desplazamiento positivo son los elementos destinados a transformar la energía mecánica en hidráulica. Estas bombas son aquellas que suministran la misma cantidad de liquido en cada ciclo o revolución del elemento de bombeo, independiente de la presión que encuentre el liquido a su salida.

Estas bombas  guían al fluido que se desplaza a lo largo de toda su trayectoria, el cual siempre está contenido entre el elemento impulsor, que puede ser un embolo, un diente de engranaje, un aspa, un tornillo, etc., y la carcasa o el cilindro. “El movimiento del desplazamiento positivo” consiste en el movimiento de un fluido causado por la disminución del volumen de una cámara.  Por consiguiente, en una máquina de desplazamiento positivo, el elemento que origina el intercambio de energía no tiene necesariamente movimiento alternativo (émbolo), sino que puede tener movimiento rotatorio (rotor).

Sin embargo, en las máquinas de desplazamiento positivo, tanto reciprocantes como rotatorias, siempre hay una cámara que aumenta de volumen (succión) y disminuye volumen (impulsión), por esto a éstas máquinas también se les denomina Volumétricas.

VENTAJA DE LAS BOMBAS POSITIVAS



Las bombas positivas tienen la ventaja de que para poder trabajar no necesitan “cebarse”, es decir, no es necesario llenar previamente el tubo de succión y el cuerpo de la bomba para que ésta pueda iniciar su funcionamiento, tal como acontece en las bombas centrífugas. En las bombas positivas, a medida que la bomba por sí misma va llenándose de líquido, éste va desalojando el aire contenida en la tubería de succión, iniciándose el escurrimiento a través del sistema cuando ha acabado de ser desalojado el aire.
Para completar lo antes dicho relativo a las bombas positivas o de presión mecánica ya sea reciprocante o rotatoria y por lo que respecta a la altura de succión más conveniente en ellas, al final se da el diagrama 8 en el cual puede encontrarse la altura práctica de succión a que conviene instalar una bomba de éstas, con el fin de obtener de ellas su mejor funcionamiento.

Queda entendido que la altura práctica de succión aquí indicada, es igual a la distancia vertical a la que puede ser elevada el agua en la succión, menos las pérdidas de carga por fricción y otras si las hay.
100490.gif
Fig. 3. Rendimiento de una bomba de desplazamiento positivo

La homogeneidad de caudal en cada ciclo se consigue gracias a unas tolerancias muy ajustadas entre el elemento de bombeo y la carcasa de la bomba. Así, la cantidad de liquido que fuga interiormente en la bomba de desplazamiento positivo es mínima, y despreciable comparada con el máximo caudal de la misma.
Cuando estas bombas presentan fugas internas considerables deben ser reparadas o sustituidas ya que no trabajan correctamente, Orientatívamente el rendimiento volumétrico de las bombas de desplazamiento positivo, aunque varia de un tipo a otro no debe ser inferior al 85%.

La comparación entre las gráficas de rendimiento para cada tipo hace comprender el porque todas las bombas de los sistemas hidráulicos de aviación son de desplazamiento positivo. Las tres razones más importantes son:

En la bomba de desplazamiento no positivo, cuando el esfuerzo a vencer por el sistema alcance un valor determinado, la bomba dejara de dar caudal y el equipo se detendrá.

En el caso anterior, y aun antes de alcanzar este valor concreto de presión, el caudal va disminuyendo notablemente, por lo que no se dispone de un control preciso de la velocidad de movimiento del sistema.

Las fugas internas en este tipo de bombas implican un elevado consumo de energía mecánica que se desaprovecha al no convertirse en energía hidráulica.

Las bombas hidrostáticas se agrupan según el tipo de elemento de bombeo y se dividen en dos grupos principales: Bombas de caudal fijo y bombas de caudal variable. El desplazamiento de fluido en cada cilindrada de una bomba de caudal fijo se mantiene constante en cada ciclo o revolución, pues el caudal es constante a una velocidad de trabajo determinada; por el contrario, el caudal de salida de una bomba de caudal variable puede cambiarse y alterar la geometría del elemento de bombeo o la cilindrada del mismo.

BOMBAS DE CAUDAL VARIABLE


Aunque todas  las  bombas   pueden  variar  su  caudal  de  salida, simplemente cambiando  la   velocidad  de trabajo, se entiende por bombas de caudal variable aquellas  que,  manteniendo  constante el régimen de funcionamiento, pueden cambiar el caudal de  salida cambiando la geometría o el volumen  de  las  cámaras  de bombeo internas; por ello se llaman bombas de cilindrada variable.

100491.gif
Fig. 18. Bomba de paletas de caudal variable

La variación de la cilindrada en estas bombas se consigue de diversas formas, entre ellas las más frecuentes son de control manual por palanca, control manual por volante, servocontrol, compensador de presión, pilotaje externo, control electrónico, etc. Este tipo de bombas se emplean principalmente para transmisiones hidrostáticas.

BOMBAS MÚLTIPLES



Son muchos los sistemas hidráulicos en los que por uno u otro motivo se precisa de diversas bombas para uno o varios circuitos. Para solucionar este problema de la forma más económica se han desarrollado las bombas múltiples, es decir varias unidades de bombeo, de igual o distinta cilindrada colocadas sobre un mismo cuerpo y accionadas simultáneamente por un mismo eje motriz.

Existen muchos modelos de bombas múltiples, pudiendo estas ser combinaciones de varias bombas de engranajes, o de pistones o combinaciones de las mismas. En la mayoría de las aplicaciones las bombas múltiples se emplean para suministrar energía a diversos circuitos de un mismo sistema hidráulico; sin embargo existen otras aplicaciones para las bombas dobles o múltiples en las que el caudal de la segunda bomba pasa directamente a la primera.

BOMBAS OSCILANTES



Estas bombas constan de un vástago conectado a un pistón, con sus elementos de estanqueidad, que se desplaza en el interior de un orificio cilíndrico cerrado por el extremo opuesto por donde tiene los orificios de aspiración y salida. Aquí, se transforma la fuerza y el movimiento lineal de un vástago en energía hidráulica.
100492.gif
Fig. 5. Bomba Manual

Se debe saber que mientras no se conecte el orificio de salida a un accionador que genere contrapresión, el accionamiento consumirá muy poca energía, y se limitará a suministrar el caudal determinado. Cuando exista la contrapresión, la energía para mover el émbolo incrementará en función de la presión que alcance el fluido.

A continuación se muestra cómo al salir el pistón se crea vacío en la cámara de bombeo. Este vacío succiona el fluido del depósito a través del antirretorno de aspiración y cierra el antirretorno de salida. Al cambiar el sentido del pistón, el fluido sale, cerrando el antirretorno de aspiración abriendo el de la línea de impulsión.
Todas las bombas hidrostáticas suministran el mismo volumen de líquido en cada ciclo, y esto no varía en función de la velocidad de accionamiento.

Las unidades típicas son: centímetros cúbicos por revolución, o litros por minutos. En la mayoría de los casos el caudal se determina a 1500 r.p.m.

Un ejemplo de bombas oscilantes son las manuales. Son empleadas en los circuitos hidráulicos  como fuente de presión y de caudal.

100493.gif

Fig. 6. Bomba manual de doble efecto

Existen diversos tipos de bombas manuales, simples, donde el bombeo se realiza por una sola cámara del cilindro; dobles, mientras que una cámara del cilindro está aspirando, la otra está bombeando; combinadas, de gran caudal a baja presión y viceversa, para conseguir un avance rápido del accionador y elevada presión a poca velocidad.
En estas bombas la presión máxima se logra en función del esfuerzo aplicado en la palanca de accionamiento.

BOMBAS ROTATIVAS



Este tipo de movimiento es el que traslada el fluido desde la aspiración hasta la salida de presión. Según el elemento que trasmita tal movimiento, se clasifican en bombas de engranajes, paletas, pistones etc.

a)    Bombas De Engranajes Externos



Produce caudal al transportar el fluido entre los dientes de dos engranajes acoplados. Uno de ellos es accionado por el eje de la bomba (motriz), y este hace girar al otro (libre).
100494.gif

Fig. 7. Bomba de engranajes externos de baja presión

Lo que sucede es el origen de un vacío en la aspiración cuando se separan los dientes, por el aumento del volumen en la cámara de aspiración. En el mismo momento los dientes se van alejando, llevándose el fluido en la cámara de aspiración. La impulsión se origina en el extremo opuesto de la bomba por la disminución de volumen que tiene lugar al engranar los dientes separados.
100495.gif

Fig. 8. Bomba de engranajes externos de alta presión

El tipo de bomba más utilizado son las de engranajes rectos, además de las helicoidales y behelicoidales.

En condiciones óptimas estas bombas pueden llegar a dar un 93% de rendimiento volumétrico.

Son sin lugar a dudas las bombas más ruidosas del mercado. Por ello no se emplean en aplicaciones fijas e interiores, donde su nivel sonoro puede perjudicar a los operarios que las trabajan.

b)    Bombas De Lóbulos



Son bombas rotativas de engranajes externos, que difieren de estas en la forma de accionamiento de los engranajes. Aquí ambos engranajes son accionados independientemente por medio de un sistema de engranajes externo a la cámara de bombeo.
100496.gif





Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License