Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Cálculo de la matriz inversa - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




Cálculo de la matriz inversa usando determinantes



Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj(A) = (Aij).

3085.gif

3086.gif

Si tenemos una matriz tal que det (A) ¹ 0, se verifica:

3087.gif

Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una de ellas).

3088.gif

Método de Gauss-Jordan para el cálculo de la matriz inversa



El método de Gauss - Jordan para calcular la matriz inversa de una dada se basa en una triangularización superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa.
3089.gif

Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangularización superior. Si al aplicar el método de Gauss (triangularización inferior) se obtiene una línea de ceros, la matriz no tiene inversa.

3090.gif

Autor:

José Ríos Saldaña





Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License