Monografías
Publicar | Monografías por Categorías | Directorio de Sitios | Software Educativo | Juegos Educativos | Cursos On-Line Gratis

 

Anatomía humana - Monografía



 
DESCARGA ESTA MONOGRAFÍA EN TU PC
Esta monografía en formato html para que puedas guardarla en tu pc e imprimirla.



Vínculo Patrocinado




Aquí te dejamos la descarga gratuita
Nota: para poder abrir archivos html solo necesitas tener instalado internet explorer u otro navegador web.




Enfermería. Cinco sentidos. Aparatos cuerpo humano. Músculo. Homeostasia. Sangre. Hemología. Cromosomas



Sistemas



Sistema nervioso conducto de elementos que en los organismos animales están relacionados con la recepción de los estímulos, la trasmisión de los impulsos nerviosos o la activación de los mecanismos de los músculos.
En el sistema nervioso, la recepcion de los estimulos en la función de unas células sensitivas especiales, los receptores. Los elementos conductores son una célula llamada  neuronas que pueden desarrollar una actividad  lenta y generalizada o pueden ser unas unidades conductoras rápidas de gran eficacia .

Anatomía y función



Sistema nervioso, la recepción de los estímulos es la función de unas células sensitivas especiales, los receptores. Los elementos conductores son unas células llamadas neuronas que pueden desarrollar una actividad lenta y generalizada o pueden ser unas unidades conductoras rápidas, de gran eficiencia. La respuesta específica de la neurona se llama impulso nervioso; ésta y su capacidad para ser estimulada, hacen de esta célula una unidad de recepción y emisión capaz de transferir información de una parte a otra del organismo.

Célula nerviosa



Cada célula nerviosa o neurona consta de una porción central o cuerpo celular, que contiene el núcleo y una o más estructuras denominadas axones y dendritas. Estas últimas son unas extensiones bastante cortas del cuerpo neuronal y están implicadas en la recepción de los estímulos. Por contraste, el axón suele ser una prolongación única y alargada, muy importante en la transmisión de los impulsos desde la región del cuerpo neuronal hasta otras células.

Sistema endocrino, conjunto de órganos y tejidos del organismo que liberan un tipo de sustancias llamado hormonas. Los órganos endocrinos también se denominan glándulas sin conducto o glándulas endocrinas, debido a que sus secreciones se liberan directamente en el torrente sanguíneo, mientras que las glándulas exocrinas liberan sus secreciones sobre la superficie interna o externa de los tejidos cutáneos, la mucosa del estómago o el revestimiento de los conductos pancreáticos. Las hormonas secretadas por las glándulas endocrinas regulan el crecimiento, desarrollo y las funciones de muchos tejidos, y coordinan los procesos metabólicos del organismo. La endocrinología es la ciencia que estudia las glándulas endocrinas, las sustancias hormonales que producen estas glándulas, sus efectos fisiológicos, así como las enfermedades y trastornos debidos a alteraciones de su función.
Los tejidos que producen hormonas se pueden clasificar en tres grupos: glándulas endocrinas, cuya función es la producción exclusiva de hormonas; glándulas endo-exocrinas, que producen también otro tipo de secreciones además de hormonas; y ciertos tejidos no glandulares, como el tejido nervioso del sistema nervioso autónomo, que produce sustancias parecidas a las hormonas.
Órganos sensoriales, en seres humanos y otros animales, órganos especializados que reciben estímulos del exterior y transmiten el impulso a través de las vías nerviosas hasta el sistema nervioso central donde se procesa y se genera una respuesta.

Los cinco sentidos



Son el oído, la vista, el olfato, el gusto y el tacto. El tacto tiene muchas subdivisiones, como el sentido de la presión, del calor, del frío y del dolor; los científicos contabilizan más de 15 sentidos adicionales. Los receptores sensoriales que están en el interior de los tejidos de los músculos, tendones y articulaciones se llaman propioceptores, e informan sobre sensaciones como el peso, la posición del cuerpo y el juego de algunas articulaciones. En el interior del canal semicircular del oído está el órgano del equilibrio, que informa de la estabilidad del cuerpo. Las sensaciones generales de las necesidades del organismo, como la sed, el hambre, la fatiga y el dolor, también se consideran sentidos. Oído; ojo; audición; boca; sistema nervioso; nariz; piel; olfato; gusto; lengua; tacto; visión.

Oído



Órgano responsable de la audición y el equilibrio. Se divide en tres zonas: externa, media e interna. La mayor parte del oído interno está rodeada por el hueso temporal.

Estructura


El oído externo es la parte del aparato auditivo que se encuentra en posición lateral al tímpano o membrana timpánica. Comprende la oreja o pabellón auricular o auditivo (lóbulo externo del oído) y el conducto auditivo externo, que mide tres centímetros de longitud.
El oído medio se encuentra situado en la cavidad timpánica llamada caja del tímpano, cuya cara externa está formada por la membrana timpánica, o tímpano, que lo separa del oído externo. Incluye el mecanismo responsable de la conducción de las ondas sonoras hacia el oído interno. Es un conducto estrecho, o fisura, que se extiende unos quince milímetros en un recorrido vertical y otros quince en recorrido horizontal. El oído medio está en comunicación directa con la nariz y la garganta a través de la trompa de eustaquio, que permite la entrada y la salida de aire del oído medio para equilibrar las diferencias de presión entre éste y el exterior. Hay una cadena formada por tres huesos pequeños y móviles (huesecillos) que atraviesa el oído medio. Estos tres huesos reciben los nombres de martillo, yunque y estribo. Los tres conectan acústicamente el tímpano con el oído interno, que contiene un líquido.

Nariz



Órgano del sentido del olfato, que también forma parte del aparato respiratorio y vocal. Desde el punto de vista anatómico, puede dividirse en una región externa, el apéndice nasal, al cual se restringe el término en lenguaje coloquial, y una región interna, constituida por dos cavidades principales, o fosas nasales, que están separadas entre sí por un septo o tabique vertical. Las fosas nasales se subdividen por medio de huesos esponjosos o turbinados, llamados cornetas, que se proyectan desde la pared externa. Entre ésta y cada cornete queda un espacio llamado meato, por ellos se comunican varios senos de los huesos maxilar superior, frontal, esfenoides y etmoides, a través de aberturas estrechas.

Gusto, uno de los cinco sentidos; actúa por contacto de sustancias solubles con la lengua. El ser humano es capaz de percibir un abanico amplio de sabores como respuesta a la combinación de varios estímulos, entre ellos textura, temperatura, olor y gusto. Considerado de forma aislada, el sentido del gusto sólo percibe cuatro sabores básicos: dulce, salado, ácido y amargo; cada uno de ellos es detectado por un tipo especial de papilas gustativas.
Las casi 10.000 papilas gustativas que tiene el ser humano están distribuidas de forma desigual en la cara superior de la lengua, donde forman manchas sensibles a clases determinadas de compuestos químicos que inducen las sensaciones del gusto. Por lo general, las papilas sensibles a los sabores dulce y salado se concentran en la punta de la lengua, las sensibles al ácido ocupan los lados y las sensibles al amargo están en la parte posterior.

Tacto, es uno de los cinco sentidos de los seres humanos y de otros animales. A través del tacto, el cuerpo percibe el contacto con las distintas sustancias, objetos, etcétera. Los seres humanos presentan terminaciones nerviosas especializadas y localizadas en la piel, que se llaman receptores del tacto y pueden ser de dos tipos: corpúsculos de meisner y discos de merkel. Estos receptores se estimulan ante una deformación mecánica de la piel y transportan las sensaciones hacia el cerebro a través de fibras nerviosas. Los receptores se encuentran en la epidermis, que es la capa más externa de la piel, y están distribuidos por todo el cuerpo de forma variable, por lo que aparecen zonas con distintos grados de sensibilidad táctil en función del números de receptores que contengan. Existe una forma compleja de receptor del tacto en la cual los terminales forman nódulos diminutos o bulbos terminales; a este tipo de receptores pertenecen los corpúsculos de paccini, sensibles a la presión, que se encuentran en las partes sensibles de las yemas de los dedos. El tacto es el menos especializado de los cinco sentidos, pero a base de usarlo se puede aumentar su agudeza; los ciegos, por ejemplo, tienen un sentido táctil muy delicado que les permite leer las letras del sistema braille.

Visión, facultad por la cual a través del ojo, órgano visual, se percibe el mundo exterior. Muchos organismos simples tienen receptores luminosos capaces de reaccionar ante determinados movimientos y sombras, pero la verdadera visión supone la formación de imágenes en el cerebro. Los ojos de los distintos organismos proporcionan imágenes de diversa claridad: este artículo se refiere a la visión en seres humanos y en otros animales con ojos de análoga complejidad.

Aparato digestivo, órganos que transforman por medios químicos los alimentos en sustancias solubles simples que pueden ser absorbidas por los tejidos. Este proceso consiste en reacciones catalíticas entre los alimentos ingeridos y enzimas secretadas en el tracto intestinal. Parece que la digestión de las sustancias grasas implica la unión de sales biliares, fosfolípidos, ácidos grasos y monoglicéridos permeables para las células intestinales. Otros nutrientes como el hierro y la vitamina b12 son absorbidos por proteínas transportadoras específicas que les permiten pasar a través de las células intestinales. El proceso descrito es típico de todos los vertebrados con excepción de los rumiantes.
La digestión incluye procesos químicos y mecánicos. Los procesos mecánicos consisten en la masticación para reducir los alimentos a partículas pequeñas, la acción de mezcla del estómago y la actividad peristáltica del intestino. Estas fuerzas desplazan el alimento a lo largo del tubo digestivo y lo mezclan con varias secreciones. Los procesos químicos permiten la transformación de los diferentes alimentos ingeridos en elementos utilizables. Tienen lugar tres reacciones químicas: conversión de los hidratos de carbono en azúcares simples como glucosa, ruptura de las proteínas en aminoácidos como alanina, y conversión de grasas en ácidos grasos y glicerol. Estos procesos son realizados por enzimas específicas.
Cuando se ingieren los alimentos, las seis glándulas salivares producen secreciones que se mezclan con éstos. La saliva rompe el almidón en maltosa, glucosa y oligosacáridos; gracias a una de las enzimas que contiene, disuelve los alimentos sólidos para hacerlos susceptibles a la acción de secreciones intestinales posteriores, estimula la secreción de enzimas digestivas y lubrica la boca y el esófago para permitir el paso de sólidos.

Respiración, proceso fisiológico por el cual los organismos vivos toman oxígeno del medio circundante y desprenden dióxido de carbono. El término respiración se utiliza también para el proceso de liberación de energía por parte de las células, procedente de la combustión de moléculas como los hidratos de carbono y las grasas. El dióxido de carbono y el agua son los productos que rinde este proceso, llamado respiración celular, para distinguirlo del proceso fisiológico global de la respiración. La respiración celular es similar en la mayoría de los organismos, desde los unicelulares, como la ameba y el paramecio, hasta los organismos superiores

El proceso de la respiración


Los organismos de los reinos protistas y móneras no tienen mecanismos respiratorios especializados, sino que realizan el intercambio de oxígeno y dióxido de carbono por difusión, a través de la membrana celular. La concentración de oxígeno en el interior del organismo es menor que la del medio exterior (aéreo o acuático), mientras que la concentración de dióxido de carbono es mayor. Como resultado, el oxígeno penetra en el organismo por difusión y el dióxido de carbono sale por el mismo sistema. La respiración de las plantas y las esponjas se basa en un mecanismo muy parecido.
En los organismos acuáticos inferiores (más complejos que las esponjas), hay un fluido circulatorio, de composición similar a la del agua de mar, que transporta los gases respiratorios desde el exterior de los tejidos al interior de las células. Este mecanismo es necesario, ya que las células se encuentran alejadas del lugar donde se realiza el intercambio gaseoso. En los animales superiores, los órganos se especializan, aumentan la superficie de exposición del fluido circulatorio al medio externo y el sistema circulatorio transporta este medio líquido por todo el organismo. El fluido, llamado sangre, contiene pigmentos respiratorios que son moléculas orgánicas de estructura compleja, formadas por una proteína y un grupo prostético que contiene hierro.

Aparato reproductor, término aplicado a un grupo de órganos necesarios o accesorios para los procesos de la reproducción. Las unidades básicas de la reproducción sexual son las células germinales masculinas y femeninas. Este artículo se ocupa de los órganos donde maduran y se almacenan las células germinales de los animales, de los órganos a través de los cuales son transportadas en el proceso de la concepción de un nuevo ser y de los órganos glandulares accesorios. Para los órganos reproductores de las plantas.
Origen de las células reproductoras
Cuando el embrión de cualquier animal con reproducción sexual experimenta la división celular, ciertas células producidas por dicha división, las células germinales primordiales, permanecen en estado indiferenciado. Los otros tipos de células, denominadas células vegetativas o células somáticas se diferencian en tejidos y órganos. En los invertebrados, las células germinales primordiales se reúnen en la cavidad corporal o en una parte del aparato circulatorio; en los vertebrados estas células se localizan en los órganos contiguos a los del aparato excretor. Los tejidos donde se alojan las células germinales se convierten en los órganos de la reproducción, llamados gónadas. Estos órganos derivan de los riñones primitivos localizados en la zona anterior y lateral del embrión, que en la mayoría de los mamíferos se desplazan antes del nacimiento a la región posterior y ventral. Las células germinales primordiales permanecen inactivas en las gónadas hasta la madurez sexual, momento en el que las células indiferenciadas sufren muchas divisiones normales o mitosis. En este proceso de desarrollo a células reproductoras maduras (gametos), las células germinales experimentan un tipo de división celular especial llamada meiosis que reduce su dotación cromosómica

Músculo, tejido u órgano del cuerpo animal caracterizado por su capacidad para contraerse, por lo general en respuesta a un estímulo nervioso. La unidad básica de todo músculo es la miofibrilla, estructura filiforme muy pequeña formada por proteínas complejas. Cada célula muscular o fibra contiene varias miofibrillas, compuestas de miofilamentos de dos tipos, gruesos y delgados, que adoptan una disposición regular. Cada miofilamento grueso contiene varios cientos de moléculas de la proteína miosina. Los filamentos delgados contienen dos cadenas de la proteína actina. Las miofribrillas están formadas de hileras que alternan miofilamentos gruesos y delgados con sus extremos traslapados. Durante las contracciones musculares, estas hileras de filamentos interdigitadas se deslizan una sobre otra por medio de puentes cruzados que actúan como ruedas. La energía que requiere este movimiento procede de mitocondrias densas que rodean las miofibrillas.
Existen tres tipos de tejido muscular: liso, esquelético y cardiaco.

Músculo liso



El músculo visceral o involuntario está compuesto de células con forma de huso con un núcleo central, que carecen de estrías transversales aunque muestran débiles estrías longitudinales. El estímulo para la contracción de los músculos lisos está mediado por el sistema nervioso vegetativo. El músculo liso se localiza en la piel, órganos internos, aparato reproductor, grandes vasos sanguíneos y aparato excretor.


Tejido muscular esquelético o estriado



Este tipo de músculo está compuesto por fibras largas rodeadas de una membrana celular, el sarcolema. Las fibras son células fusiformes alargadas que contienen muchos núcleos y en las que se observa con claridad estrías longitudinales y transversales. Los músculos esqueléticos están inervados a partir del sistema nervioso central, y debido a que éste se halla en parte bajo control consciente, se llaman músculos voluntarios. La mayor parte de los músculos esqueléticos están unidos a zonas del esqueleto mediante inserciones de tejido conjuntivo llamadas tendones. Las contracciones del músculo esquelético permiten los movimientos de los distintos huesos y cartílagos del esqueleto. Los músculos esqueléticos forman la mayor parte de la masa corporal de los vertebrados.

Aparato circulatorio, en anatomía y fisiología, sistema por el que discurre la sangre a través de las arterias, los capilares y las venas; este recorrido tiene su punto de partida y su final en el corazón. En los humanos y en los vertebrados superiores, el corazón está formado por cuatro cavidades: la aurículas derecha e izquierda y los ventrículos derecho e izquierdo. El lado derecho del corazón bombea sangre carente de oxígeno procedente de los tejidos hacia los pulmones donde se oxigena; el lado izquierdo del corazón recibe la sangre oxigenada de los pulmones y la impulsa a través de las arterias a todos los tejidos del organismo. La circulación se inicia al principio de la vida fetal. Se calcula que una porción determinada de sangre completa su recorrido en un periodo aproximado de un minuto.

Sitema osceo, el esqueleto humano es un armazón de huesos y resistente, que sostienen y protegen todos los órganos y tejidos blandos del cuerpo.
Están formados por unos 200 huesos que forman: la cabeza, el tronco, y las extremidades. La cabeza se divide en dos porciones: la superior y posterior es el cráneo, y la del frente es la cara.
El cráneo es una especie de caja ovalada, formada por ocho huesos herméticamente unidos y sirven de protección y alojamiento al cerebro y al cerebelo; la cara es una especie de cavidades especiales para ojos, la nariz y los oídos, están formados por catorce huesos, de los cuales los pómulos, los nasales y los maxilares, son los principales. La columba vertebral, es la parte mas importante del tronco, sirviendo de eje y sosteniendo al cuerpo.
Cuando nacemos nuestra columna costa de treinta y tres vértebras, distintas distribuidas en la forma siguientes; 7 cervicales, 12 dorsales, 5 lonbales y 9 peulicas, denominadas aso por su ubicación siendo las cervicales las correspondientes a la parte superior de la columna y las peulicas al extremo inferior.

Sistema excretor, la excreción e el proceso mediante cual el cuerpo elimina los desperdicios químicos y cualquier material que haya en exceso, varios órganos participan en la excreción: los riñones, los pulmones, la piel, y los órganos digestivos.

Organismo complejo


El hombre como organismo viviente , se puede considerar como un grupo de unidades llamadas células, las cuales están maravillosamente integradas tanto estructural como funcionalmente.
Las células terminan siempre en especializarse o diferenciarse en mayor o menor grado. Un conjunto diferencia en forma similar constituye un tejido como son las células grasas del tejido adiposo. Los tejidos a su vez forman órganos; forman sistemas y aparatos. Por ultimo, los sistemas se combinan de manera complicada.
Por ultimo, los sistemas y aparatos. Por ultimo, los sistemas se combinan de manera complican para crear al hombre que actúa y piensa.
La anatomía humana, es la ciencia de la forma y estructura del cuerpo y sus partes. Anatomía macroscópica, es la que trata de  las estructuras distinguibles, por disección y a simple vista. Anatomía microscópica es la que hace uso del microscopio.
Fisiología humana es el estudio de las funciones del cuerpo y sus partes componentes. Fisiología celular; es la rama especializada mas destacada y esta dedicada al estudio de las actividades de las células individuales y sus partes.
La distinción entre fisiología y anatomía no siempre es clara, el uso de términos se considera mas como indicador de estas materias.

Antón van leeuwekhoek



Historia del microscopio fue creado  por ” antón ” van leevwenkoek un joven pulidor de lentes ocultadores, después que haber trabajado se dio cuenta que si juntaba dos lentes era mayor su resolución para ver mayor las cosas microscópicamente, su resolución era de 240.

El microscopio compuesto



Un microscopio compuesto tiene varios objetivos con lentes diferentes. Podemos determinar la magnificación, multiplicado el poder de ficocion del objeto que se esta usando.

Funciones de cada parte



Ocular; sostiene los lentes que aumentan la magnificación.
Ajustes grueso; mueve el tubo o la platina hacia arriba o hacia abajo.
Brazo; sostiene la imagen.
Diagrama; regula la cantidad de luz que puede pasar a través del espécimen.
Base; sostener el microscopio.
Objetivos; sostiene los lentes de magnificación.

Liquidos corporales


Se encuentras dentro de las células (intracelulares) o fuera de ellas, en ese espacio extra celular., este a su vez esta dividido en compartimiento bascular o del plasma, y un compartimiento, intersticial ( entre las células ), en adultos el plasma constituye el 5% del peso liquido corporal, el liquido intersticial el 15% , y el liquido intracelular 45%.
Por lo tanto, aproximadamente el 65% del peso corporal, estas constituido por  agua 2/3 de la cual se encuentras dentro de las células. El 35% restante esta compuesto por aproximadamente el 15% de proteínas 5% de materia mineral y 15% de grasa.

Homeostasia


Las células necesitan un medio ambiente constante, al medio ambiente de las células corporales. El medio liquido intersticial ( que proviene del torrente circulatorio ) proceso por el cual un organismo mantiene las condiciones internas constantes necesarias para la vida. El concepto de homeostasis fue introducido por primera vez por el fisiólogo francés del siglo xix claude bernard, quien subrayó que “la estabilidad del medio interno es una condición de vida libre”. Para que un organismo pueda sobrevivir debe ser, en parte, independiente de su medio; esta independencia está proporcionada por la homeostasis. Este término fue acuñado por walter cannon en 1926 para referirse a la capacidad del cuerpo para regular la composición y volumen de la sangre, y por lo tanto, de todos los fluidos que bañan las células del organismo, el “líquido extracelular”. El término homeostasis deriva de la palabra griega “homeo” que significa igual, y “stasis” que significa posición. En la actualidad, se aplica al conjunto de procesos que previenen fluctuaciones en la fisiología de un organismo, e incluso se ha aplicado a la regulación de variaciones en los diversos ecosistemas o del universo como un todo.
En los organismos vivos la homeostasis implica un consumo de energía necesario para mantener una posición en un equilibrio dinámico. Esto significa que, aunque las condiciones externas puedan estar sujetas continuamente a variaciones, los mecanismos homeostáticos aseguran que los efectos de estos cambios sobre los organismos sean mínimos. Si el equilibrio se altera y los mecanismos homeostáticos son incapaces de recuperarlo, entonces el organismo puede enfermar y con el tiempo morir.
La homeostasis es necesaria porque los organismos metabolizan moléculas de forma continua (véase metabolismo) y originan productos de desecho potencialmente tóxicos empleando sustancias importantes que es necesario reponer. Además de esto, los organismos también precisan mantener un medio intracelular constante indiferente a los efectos que las variaciones originan en su medio externo.


Mecanismos homeostáticos


La homeostasis requiere que el organismo sea capaz de detectar la presencia de cambios en el medio y de controlarlos. Una pequeña variación respecto al nivel establecido iniciará una respuesta homeostática que restituirá el estado deseado del medio. La cibernética, conocida también como teoría de control, es el estudio de los mecanismos homeostáticos o servomecanismos (término utilizado para describir los mecanismos análogos empleados por máquinas). En la teoría de control, se han diseñado modelos matemáticos e informáticos para describir los sistemas de control fisiológico, aunque con frecuencia estos son algo toscos e insuficientes ya que dentro de un organismo existen muchos sistemas interactivos muy complejos. Algunos de los mecanismos descritos en la teoría de control son útiles para comprender los mecanismos homeostáticos, como por ejemplo los circuitos de retroalimentación. Estos suponen que el producto de un mecanismo actúa de alguna forma para alterar la naturaleza, velocidad, o eficacia del propio mecanismo en sentido positivo o negativo. En biología, la mayoría de los circuitos de retroalimentación son negativos, es decir inhiben los mecanismos o procesos celulares de los que provienen.


La funcion y  condosion de la sangre



Sustancia líquida que circula por las arterias y las venas del organismo. La sangre es roja brillante o escarlata cuando ha sido oxigenada en los pulmones y pasa a las arterias; adquiere una tonalidad más azulada cuando ha cedido su oxígeno para nutrir los tejidos del organismo y regresa a los pulmones a través de las venas y de los pequeños vasos denominados capilares. En los pulmones, la sangre cede el dióxido de carbono que ha captado procedente de los tejidos, recibe un nuevo aporte de oxígeno e inicia un nuevo ciclo. Este movimiento circulatorio de sangre tiene lugar gracias a la actividad coordinada del corazón, los pulmones y las paredes de los vasos sanguíneos.

Composición de la sangre.



La sangre está formada por un líquido amarillento denominado plasma, en el que se encuentran en suspensión millones de células que suponen cerca del 45% del volumen de sangre total. Tiene un olor característico y una densidad relativa que oscila entre 1,056 y 1,066. En el adulto sano el volumen de la sangre es una onceava parte del peso corporal, de 4,5 a 6 litros.
Una gran parte del plasma es agua, medio que facilita la circulación de muchos factores indispensables que forman la sangre. Un milímetro cúbico de sangre humana contiene unos cinco millones de corpúsculos o glóbulos rojos, llamados eritrocitos o hematíes; entre 5.000 y 10.000 corpúsculos o glóbulos blancos que reciben el nombre de leucocitos, y entre 200.000 y 300.000 plaquetas, denominadas trombocitos. La sangre también transporta muchas sales y sustancias orgánicas disueltas.


Eritrocitos


Los glóbulos rojos, o células rojas de la sangre, tienen forma de discos redondeados, bicóncavos y con un diámetro aproximado de 7,5 micras. En el ser humano y la mayoría de los mamíferos los eritrocitos maduros carecen de núcleo. En algunos vertebrados son ovales y nucleados. La hemoglobina, una proteína de las células rojas de la sangre, es el pigmento sanguíneo especial más importante y su función es el transporte de oxígeno desde los pulmones a las células del organismo, donde capta dióxido de carbono que conduce a los pulmones para ser eliminado hacia el exterior.


Leucocitos


Las células o glóbulos blancos de la sangre son de dos tipos principales: los granulosos, con núcleo multilobulado, y los no granulosos, que tienen un núcleo redondeado. Los leucocitos granulosos o granulocitos incluyen los neutrófilos, que fagocitan y destruyen bacterias; los eosinófilos, que aumentan su número y se activan en presencia de ciertas infecciones y alergias, y los basófilos, que segregan sustancias como la heparina, de propiedades anticoagulantes, y la histamina que estimula el proceso de la inflamación. Los leucocitos no granulosos están formados por linfocitos y un número más reducido de monocitos, asociados con el sistema inmunológico. Los linfocitos desempeñan un papel importante en la producción de anticuerpos y en la inmunidad celular. Los monocitos digieren sustancias extrañas no bacterianas, por lo general durante el transcurso de infecciones crónicas.

Plaquetas



Las plaquetas de la sangre son cuerpos pequeños, ovoideos, sin núcleo, con un diámetro mucho menor que el de los eritrocitos. Los trombocitos o plaquetas se adhieren a la superficie interna de la pared de los vasos sanguíneos en el lugar de la lesión y ocluyen el defecto de la pared vascular. Conforme se destruyen, liberan agentes coagulantes que conducen a la formación local de trombina que ayuda a formar un coágulo, el primer paso en la cicatrización de una herida.

Recuento sanguíneo



La técnica de laboratorio llamada recuento sanguíneo completo (rsc) es un indicador útil de enfermedad y salud. Una muestra de sangre determinada con precisión se diluye de forma automática y las células se cuentan con un detector óptico o electrónico. El empleo de ajustes o diluyentes distintos, permite realizar el conteo de los glóbulos rojos, los blancos o las plaquetas. Un rsc también incluye la clasificación de los glóbulos blancos en categorías, lo que se puede realizar por la observación al microscopio de una muestra teñida sobre un portaobjetos, o de forma automática utilizando una de las diversas técnicas que existen.

Plasma



El plasma es una sustancia compleja; su componente principal es el agua. También contiene proteínas plasmáticas, sustancias inorgánicas (como sodio, potasio, cloruro de calcio, carbonato y bicarbonato), azúcares, hormonas, enzimas, lípidos, aminoácidos y productos de degradación como urea y creatinina. Todas estas sustancias aparecen en pequeñas cantidades.
Entre las proteínas plasmáticas se encuentran la albúmina, principal agente responsable del mantenimiento de la presión osmótica sanguínea y, por consiguiente, controla su tendencia a difundirse a través de las paredes de los vasos sanguíneos; una docena o más de proteínas, como el fibrinógeno y la protrombina, que participan en la coagulación; aglutininas, que producen las reacciones de aglutinación entre muestras de sangre de tipos distintos y la reacción conocida como anafilaxis, una forma de shock alérgico, y globulinas de muchos tipos, incluyendo los anticuerpos, que proporcionan inmunidad frente a muchas enfermedades. Otras proteínas plasmáticas importantes actúan como transportadores hasta los tejidos de nutrientes esenciales como el cobre, el hierro, otros metales y diversas hormonas.
La primera separación de las proteínas plasmáticas para su estudio individual se llevó a cabo en la década de 1920. Durante la ii guerra mundial se consiguió perfeccionar la técnica, lo que permitió el empleo de fracciones individuales. Algunos de los resultados de este trabajo incluyen el uso de albúmina sérica como un sustituto de la sangre o el plasma en las transfusiones, el empleo de gammaglobulinas para una protección a corto plazo frente a enfermedades como sarampión y hepatitis, y la utilización de globulina antihemofílica para el tratamiento de la hemofilia.


Formación de la sangre y reacciones



Los eritrocitos



Se forman en la médula ósea y tras una vida media de 120 días son destruidos y eliminados por el bazo. En cuanto a las células blancas de los linfocitos en el timo, en los ganglios linfáticos y en otros tejidos linfáticos. Las plaquetas se producen en la médula ósea. Todos estos componentes de la sangre la sangre, los leucocitos granulosos o granulocitos se forman en la médula ósea; se agotan o consumen cada cierto tiempo y, por tanto, deben ser reemplazados con la misma frecuencia. Los componentes del plasma se forman en varios órganos del cuerpo, incluido el hígado, responsable de la síntesis de albúmina y fibrinógeno, que libera sustancias tan importantes como el sodio, el potasio y el calcio. Las glándulas endocrinas producen las hormonas transportadas en el plasma. Los linfocitos y las células plasmáticas sintetizan ciertas proteínas y otros componentes proceden de la absorción que tiene lugar en el tracto intestinal.


Organización del cuerpo



Se ha adaptado sistemas de referencia anatómica, para facilitar la uniformidad de la descripción del cuerpo. Consideramos 4 sistemas de referencia.

Dirección
Planos
Cavidades
Unidades estructurales

Dirección, es posición anatómica el cuerpo esta erecto, mirando hacia delante, con los brazos a los lados y las palmas hacia delante.
Todas las situaciones de colocación o posición , supone que el cuerpo esta , en esta posición.
Superior, mas alto o encima.- por ejemplo, la cabeza es superior, con respecto al cuello inferior, mas abajo o por debajo; el pie es inferior con respecto al tobillo, anterior toráxico anterior, posterior, situado de tras dorsal, la columna vertebral es posterior al aparato digestivo.

Planos, el cuerpo se estudia con respecto a los planos, pasa a través de el.
P.sagital medio, el plano se divide el cuerpo , verticalmente a través de la línea media, en mitades de derecha e izquierda.
P.sagital, todo plano paralelo a la línea sagital media qu divide el cuerpo, verticalmente en dos patrones derecha e izquierda.
P.orizontal, (trasverso) todo plano que divide el cuerpo en patrones superior e inferior.
P. Frontal, (coronal) todo plano divide el cuerpo en patrones o ventral y posterior o dorsal.

Cabidades, este termino para describir el tercer sistema de organización o sistema de referencia del cuerpo, tiene dos cavidades principales, cada una se sub. Divide en dos, cavidades menores.

Cavidad ventral
Torácica, se divide a su vez pleural y pericaulica.
Abdomen pélvica
Cavidad dorsal
Craneal
Rao ludía

Cavidad ventral, los órganos se encargan de mantener un medio ambiente constante u homeostasis.
La cavidad torácica, contiene los pulmones el pericalvio y los grandes vasos.
La cavidad abominó pélvica, contiene aquellos órganos que están por debajo del diafragma, respiratorio, pero del diafragma urogenital.
Cavidad dorsal, tiene estructuras del sistema nervioso que sirven para coordinar las funciones del cuerpo de una manera unificada.

Célula



Unidad mínima de un organismo capaz de actuar de manera autónoma. Todos los organismos vivos están formados por células, y en general se acepta que ningún organismo es un ser vivo si no consta al menos de una célula. Algunos organismos microscópicos, como bacterias y protozoos, son células únicas, mientras que los animales y plantas están formados por muchos millones de células organizadas en tejidos y órganos. Aunque los virus y los extractos acelulares realizan muchas de las funciones propias de la célula viva, carecen de vida independiente, capacidad de crecimiento y reproducción propios de las células y, por tanto, no se consideran seres vivos. La biología estudia las células en función de su constitución molecular y la forma en que cooperan entre sí para constituir organismos muy complejos, como el ser humano. Para poder comprender cómo funciona el cuerpo humano sano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen.

Protoplasma



Término con el que se denomina en ocasiones a la sustancia fundamental (la materia viva) de las células. Este material incluiría la compleja organización coloidal de sustancias que componen el núcleo celular, el citoplasma, los plastos y las mitocondrias. El término protoplasma, que está muy extendido, está siendo sustituido por el término citoplasma. Éste último, sin embargo, no incluye el núcleo de la célula. La palabra protoplasma se utiliza, además, para denominar a las estructuras tubulares (hifas), de las cuales están compuestos los hongos.

Lípidos



Grupo heterogéneo de sustancias orgánicas que se encuentran en los organismos vivos. Los lípidos están formados por carbono, hidrógeno y oxígeno, aunque en proporciones distintas a como estos componentes aparecen en los azúcares. Se distinguen de otros tipos de compuestos orgánicos porque no son solubles en agua (hidrosolubles) sino en disolventes orgánicos (alcohol, éter). Entre los lípidos más importantes se hallan los fosfolípidos, componentes mayoritarios de la membrana de la célula. Los fosfolípidos limitan el paso de agua y compuestos hidrosolubles a través de la membrana celular, permitiendo así a la célula mantener un reparto desigual de estas sustancias entre el exterior y el interior.las grasas y aceites, también llamados triglicéridos, son también otro tipo de lípidos. Sirven como depósitos de reserva de energía en las células animales y vegetales. Cada molécula de grasa está formada por cadenas de ácidos grasos unidas a un alcohol llamado glicerol o glicerina. Cuando un organismo recibe energía asimilable en exceso a partir del alimento o de la fotosíntesis, éste puede almacenarla en forma de grasas, que podrán ser reutilizadas posteriormente en la producción de energía, cuando el organismo lo necesite. A igual peso molecular, las grasas proporcionan el doble de energía que los hidratos de carbono o las proteínas.

Membrana


(del latín, membrana, ‘pergamino’), en biología, cualquier capa delgada de material elástico y resistente que cubre o delimita las células y órganos del cuerpo, o reviste las articulaciones y los conductos y tractos que se abren al exterior del organismo. La membrana que rodea los organismos animales o vegetales unicelulares o cada una de las células de los organismos multicelulares desempeña un papel muy importante en los procesos de nutrición, respiración y excreción de dichas células. Estas membranas celulares son semipermeables, es decir, permiten el paso de moléculas pequeñas, como las de los azúcares y sales, pero no de moléculas grandes como las proteínas. Las estructuras internas de las células, como el núcleo, también tienen membranas.

El citoplasma


Comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos, como se describirá más adelante.la solución acuosa concentrada en la que están suspendidos los orgánulos se llama citosol. Es un gel de base acuosa que contiene gran cantidad de moléculas grandes y pequeñas, y en la mayor parte de las células es, con diferencia, el compartimiento más voluminoso (en las bacterias es el único compartimiento intracelular). En el citosol se producen muchas de las funciones más importantes de mantenimiento celular, como las primeras etapas de descomposición de moléculas nutritivas y la síntesis de muchas de las grandes moléculas que constituyen la célula. Aunque muchas moléculas del citosol se encuentran en estado de solución verdadera y se desplazan con rapidez de un lugar a otro por difusión libre, otras están ordenadas de forma rigurosa. Estas estructuras ordenadas confieren al citosol una organización interna que actúa como marco para la fabricación y descomposición de grandes moléculas y canaliza muchas de las reacciones químicas celulares a lo largo de vías restringidas.

Ribosomas



Corpúsculo celular que utiliza las instrucciones genéticas contenidas en el ácido ribonucleico (arn) para enlazar secuencias específicas de aminoácidos y formar así proteínas. Los ribosomas se encuentran en todas las células y también dentro de dos estructuras celulares llamadas mitocondrias y cloroplastos. Casi todos flotan libremente en el citoplasma (el contenido celular situado fuera del núcleo), pero muchos están enlazados a redes de túbulos envueltos en membranas que ocupan toda la masa celular y constituyen el llamado retículo endoplasmático.cada ribosoma consta de cuatro moléculas o subunidades distintas de ácido ribonucleico (arn) y de numerosas proteínas. En el ser humano, tres de estas cuatro subunidades se sintetizan en el nucleolo, una densa estructura granular situada dentro del núcleo. La cuarta subunidad se sintetiza fuera del nucleolo y se transporta al interior de éste para el ensamblaje del ribosoma.


Mitocondria



Diminuta estructura celular de doble membrana responsable de la conversión de nutrientes en el compuesto rico en energía trifosfato de adenosina (atp), que actúa como combustible celular. Por esta función que desempeñan, llamada respiración, se dice que las mitocondrias son el motor de la célula.
Se encuentran mitocondrias en las células eucarióticas (células con el núcleo delimitado por membrana). El número de mitocondrias de una célula depende de la función de ésta. Las células con demandas de energía particularmente elevadas, como las musculares, tienen muchas más mitocondrias que otras. Por su acusado parecido con las bacterias aeróbicas (es decir, que necesitan oxígeno), los científicos creen que las mitocondrias han evolucionado a partir de una relación simbiótica o de cooperación entre una bacteria aeróbica y una célula eucariótica ancestral.


Lisosoma



Saco delimitado por una membrana que se encuentra en las células con núcleo (eucarióticas) y contiene enzimas digestivas que degradan moléculas complejas. Los lisosomas abundan en las células encargadas de combatir las enfermedades, como los leucocitos, que destruyen invasores nocivos y restos celulares.el tamaño de los lisosomas es muy variable, pero suele oscilar entre 0,05 y 0,5 micrómetros de diámetro. Cada uno está rodeado por una membrana que protege la célula de las enzimas digestivas del lisosoma (si éste se rompe, aquéllas destruyen la célula). Las proteínas de la membrana protegen la actividad de las enzimas manteniendo la acidez interna adecuada; también transportan los productos digeridos fuera del lisosoma.

Centríolo



Cada una de las dos estructuras de forma cilíndrica que se encuentran en el centro de un orgánulo de las células eucarióticas denominado centrosoma. Al par de centriolos se conoce con el nombre de diplosoma; éstos se disponen perpendicularmente entre sí.el centrosoma está formado por el diplosoma, el material periocentriolar (material de aspecto amorfo) y las fibras del áster (microtúbulos que se organizan en forma de radios).la estructura del centriolo es similar a la parte denominada cuerpo basal o cinetosoma de un cilio o de un flagelo. Consiste en un cilindro abierto, de unos 0,2 por 0,5 micrómetros, cuyas paredes están formadas por 9 tripletes (grupos de tres) de microtúbulos, los cuales se mantienen unidos mediante conexiones. No poseen microtúbulos centrales como en el caso del axonema o tallo del cilio.

El núcleo



El órgano más conspicuo en casi todas las células animales y vegetales es el núcleo; está rodeado de forma característica por una membrana, es esférico y mide unas 5 µn de diámetro. Dentro del núcleo, las moléculas de adn y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado. Pero justo antes de que la célula se divida, se condensan y adquieren grosor suficiente para ser detectables como estructuras independientes. El adn del interior de cada cromosoma es una molécula única muy larga y arrollada que contiene secuencias lineales de genes. Éstos encierran a su vez instrucciones codificadas para la construcción de las moléculas de proteínas y arn necesarias para producir una copia funcional de la célula.

Aparato del golgi



Una de las funciones más importantes de las vesículas es transportar materiales hacia la membrana plasmática y desde ella hacia el interior de la célula; constituyen de este modo un medio de comunicación entre el interior celular y el medio externo. Hay un intercambio continuo de materiales entre el retículo endoplasmático, el aparato de golgi, los lisosomas y el exterior celular. Dicho intercambio está mediado por pequeñas vesículas delimitadas por membrana que se forman por gemación a partir de una membrana y se fusionan con otra. Así, en la superficie celular siempre hay porciones de membrana plasmática que se invaginan y separan para formar vesículas que transportan hacia el interior de la célula materiales capturados en el medio externo; este fenómeno se llama endocitosis, y permite a la célula engullir partículas muy grandes e incluso células extrañas completas. El fenómeno opuesto, llamado secreción o exocitosis, es la fusión de las vesículas internas con la membrana plasmática seguida de la liberación de su contenido al medio externo; es también común en muchas células.

Lisosoma



Saco delimitado por una membrana que se encuentra en las células con núcleo (eucarióticas) y contiene enzimas digestivas que degradan moléculas complejas. Los lisosomas abundan en las células encargadas de combatir las enfermedades, como los leucocitos, que destruyen invasores nocivos y restos celulares.

El cromosoma



Contiene el ácido nucleico, adn, que se divide en pequeñas unidades llamadas genes. Éstos determinan las características hereditarias de la célula u organismo. Las células de los individuos de una especie determinada suelen tener un número fijo de cromosomas, que en las plantas y animales superiores se presentan por pares. El ser humano tiene 23 pares de cromosomas. En estos organismos, las células reproductoras tienen por lo general sólo la mitad de los cromosomas presentes en las corporales o somáticas. Durante la fecundación, el espermatozoide y el óvulo se unen y reconstruyen en el nuevo organismo la disposición por pares de los cromosomas; la mitad de estos cromosomas procede de un parental, y la otra mitad del otro. Es posible alterar el número de cromosomas de forma artificial, sobre todo en las plantas, donde se forman múltiplos del número de cromosomas normal mediante tratamiento con colchicina.
Vacuola, cavidad rodeada por una membrana que se encuentra en el citoplasma de las células, principalmente de las vegetales.se forman por fusión de las vesículas procedentes del retículo endoplasmático y del aparato de golgi. En general, sirven para almacenar sustancias de desecho o de reserva.en las células vegetales, las vacuolas ocupan la mitad del volumen celular y en ocasiones pueden llegar hasta casi la totalidad. También, aumentan el tamaño de la célula por acumulación de agua.

Tejidos



Tejido epitelial



Este tejido incluye la piel y las membranas que cubren las superficies internas del cuerpo, como las de los pulmones, estómago, intestino y los vasos que transportan la sangre. Debido a que su principal función es proteger las lesiones e infecciones, el epitelio está compuesto por células estrechamente unidas con escasa sustancia intercelular entre ellas.hay unas doce clases de tejido epitelial. Una de ellas es el epitelio pavimentoso estratificado presente en la piel y en la superficie del esófago y la vagina. Está formado por una capa fina de células planas y escamosas que descansan sobre capilares sanguíneos y crecen hacia la superficie, donde mueren y se eliminan. Otro es el epitelio prismático simple, que incluye al epitelio del sistema digestivo desde el estómago al ano; estas células no sólo controlan la absorción de nutrientes, sino que también segregan moco. Algunas glándulas multicelulares se forman por el crecimiento hacia dentro (invaginaciones) del epitelio, por ejemplo las glándulas sudoríparas de la piel o las glándulas gástricas. El crecimiento hacia afuera ocurre en el pelo, las uñas y otras estructuras.

Tejido conectivo



Estos tejidos, en conjunto, sustentan y mantienen las distintas partes del cuerpo, y comprenden el tejido conectivo elástico y fibroso, el tejido adiposo (tejido graso), el cartílago y el hueso. A diferencia del epitelio, las células de estos tejidos están muy separadas unas de otras, con gran cantidad de sustancia intercelular entre ellas. Las células del tejido fibroso se interrelacionan unas con otras por una red irregular de filamentos en capa fina que también forma el esqueleto de vasos sanguíneos, nervios y otros órganos. El tejido adiposo tiene una función similar, y sus células suponen además un almacén de grasas. El tejido elástico que forma parte de los ligamentos, de la tráquea y de las paredes arteriales se dilata y se contrae con cada latido del pulso. Durante el desarrollo embrionario los fibroblastos segregan colágeno para el desarrollo del tejido fibroso y se modifican más tarde para segregar una proteína diferente llamada condrina para la formación del cartílago; ciertos cartílagos se calcifican para formar huesos. La sangre y la linfa suelen considerarse tejidos conectivos.

Tejido muscular



Estos tejidos que se contraen y se relajan comprenden los músculos estriados, lisos y músculos cardiacos. El músculo estriado, también llamado músculo esquelético o voluntario, incluye al músculo activado por el sistema nervioso somático o voluntario. Las células del músculo estriado, unidas unas con otras, carecen de pared celular y tienen numerosos núcleos y presentan estrías transversales. El músculo liso o involuntario que se activa por el sistema nervioso autónomo se encuentra en distintos órganos y sus células se agrupan formando túnicas o haces musculares. El músculo cardiaco, que tiene características tanto del liso como del estriado, está constituido por una gran red de células entrelazadas y vainas musculares.

Tejido nervioso


Este complejo grupo de células transfiere información de una parte del cuerpo a otra; de esta manera coordina el funcionamiento de un organismo y regula su comportamiento. Cada neurona o célula nerviosa consta de un cuerpo celular con distintas ramas llamadas dendritas y una prolongación llamada axón. Las dendritas conectan unas neuronas con otras y transmiten información hacia el cuerpo de la neurona; el axón transmite impulsos a un órgano o tejido.

Autor:

Fulana




Creative Commons License
Estos contenidos son Copyleft bajo una Licencia de Creative Commons.
Pueden ser distribuidos o reproducidos, mencionando su autor.
Siempre que no sea para un uso económico o comercial.
No se pueden alterar o transformar, para generar unos nuevos.

 
TodoMonografías.com © 2006 - Términos y Condiciones - Esta obra está bajo una licencia de Creative Commons. Creative Commons License